Search for Lepton Number Violation at LHCb

Update for Majorana Neutrino Search with Like-Sign Di-Muons: $B^- \rightarrow \pi^+ \mu^- \mu^-$ decay

PRELIMINARY, presented for the first time

Bartłomiej Rachwał (IFJ PAN Kraków) on behalf of the LHCb Collaboration

The Cracow Epiphany Conference, 8-10 January 2014
Outline

- Lepton Flavor and Lepton Number Violation studies at LHCb
- Lepton Number Violation (LNV) vs. Majorana neutrinos searches
- Searches for Majorana neutrinos at LHCb based on the decay $B^- \rightarrow \pi^+ \mu^- \mu^-$
 - Comparison of „previous” vs „updated” studies
 - The search strategies:
 - based on the neutrino lifetime,
 - based on a function of the neutrino mass,
 - Results: Upper limits
 - Results: Upper limit for coupling to $|V_{\mu 4}|^2$
- Conclusions.
Lepton Flavour and Lepton Number Violation studies at LHCb

1) Searches in tau lepton decays
 • based on 1.0 fb⁻¹ of data
 • first results on the $\tau^- \rightarrow \mu^- \mu^+ \mu^-$ decay mode from hadron collider
 • results for $\tau^- \rightarrow \bar{\nu}\mu^+ \mu^-$ and $\tau^- \rightarrow \nu\mu^- \mu^-$ represents the first direct experimental limits on this channel

 \[BR(\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 8.0 \times 10^{-8} \text{ at 90\% CL} \]
 \[BR(\tau^- \rightarrow \bar{\nu}\mu^+ \mu^-) < 3.3 \times 10^{-7} \text{ at 90\% CL} \]
 \[BR(\tau^- \rightarrow \nu\mu^- \mu^-) < 4.4 \times 10^{-7} \text{ at 90\% CL} \]

2) $B_s^0 \rightarrow e^\pm \mu^\mp$ and $B^0 \rightarrow e^\pm \mu^\mp$
 • based on 1.0 fb⁻¹ of data
 • results are a factor of 20 lower than those set by previous experiments

 \[BR(B_s^0 \rightarrow e^\pm \mu^\mp) < 1.1(1.4) \times 10^{-8} \text{ at 90\% (95\%) CL} \]
 \[BR(B^0 \rightarrow e^\pm \mu^\mp) < 2.8(3.7) \times 10^{-9} \text{ at 90\% (95\%) CL} \]

3) Searches in heavy baryon decays
 underway...

4) Majorana neutrino search
 • Based on 0.41 fb⁻¹ of data

 \[\Lambda_b^0 \rightarrow h^+ \mu^- \text{ (} h = K, D, D_s \text{) } \]

 Update for $B \rightarrow \pi^+ \mu^- \mu^-$ with 3.0 fb⁻¹ of data presented first time in this presentation...

 \[\begin{array}{|c|c|c|}
 \hline
 \text{Mode} & B \text{ upper limit} & \text{Approximate limits as function of } M_N \text{ at 95\% CL} \\
 \hline
 D^+ \mu^- \mu^- & 6.9 \times 10^{-7} & \\
 D^{*+} \mu^- \mu^- & 2.4 \times 10^{-6} & \\
 \pi^+ \mu^- \mu^- & 1.3 \times 10^{-8} & (0.4 - 1.0) \times 10^{-8} \\
 D^+_s \mu^- \mu^- & 1.3 \times 10^{-8} & (1.5 - 8.0) \times 10^{-7} \\
 D^0 \pi^+ \mu^- \mu^- & 1.5 \times 10^{-6} & (0.3 - 1.5) \times 10^{-6} \\
 \hline
 \end{array} \]

LNV vs. Majorana neutrinos searches

- **Lepton number** is conserved in the Standard Model but can be violated in a range of new physics models such as those with Majorana neutrinos.

- **Neutrino oscillation** phenomenon have conclusively shown that neutrinos are massive, which is not part of the SM. This is the proof of the Lepton Number Violation, LNV)

- **The Majorana nature of neutrinos** can be experimentally verified only via lepton-number violating processes involving charged leptons in the final state.

- **The LHCb physics program** encompasses the search for Majorana neutrinos in a broad class of exclusive B and D decays.

- The process $B^- \rightarrow \pi^+ \mu^- \mu^-$ is considered to be the most sensitive in B meson decays:

<table>
<thead>
<tr>
<th>Mode</th>
<th>B upper limit</th>
<th>Approx. limits as function of M_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^+ \mu^- \mu^-$</td>
<td>6.9×10^{-7}</td>
<td></td>
</tr>
<tr>
<td>$D^{*+} \mu^- \mu^-$</td>
<td>2.4×10^{-6}</td>
<td></td>
</tr>
<tr>
<td>$\pi^+ \mu^- \mu^-$</td>
<td>1.3×10^{-8}</td>
<td>$(0.4 - 1.0) \times 10^{-8}$</td>
</tr>
<tr>
<td>$D^+_s \mu^- \mu^-$</td>
<td>5.8×10^{-7}</td>
<td>$(1.5 - 8.0) \times 10^{-7}$</td>
</tr>
<tr>
<td>$D^0_{\pi^+} \mu^- \mu^-$</td>
<td>1.5×10^{-6}</td>
<td>$(0.3 - 1.5) \times 10^{-6}$</td>
</tr>
</tbody>
</table>

Searches for Majorana neutrinos

\[B^- \rightarrow \pi^+ \mu^- \mu^- \]

- Similarity to neutrinoless double β decay, $2\beta_{0\nu}$
 - but $B^- \rightarrow \pi^+ \mu^- \mu^-$ probes LFV with muons while $2\beta_{0\nu}$ involves electrons,

- Final states containing π^+ are mediated by an on-shell Majorana neutrino
 - b-quark decays can produce a light neutrino that can mix with a heavy neutrino:

![Diagram of the decay process](image)
Searches for Majorana neutrinos @ LHCb

Previous results:

- **0.41 fb⁻¹ of data** collected at the center-of-mass energy of 7 TeV,
- Sensitive to **N with short lifetimes** of the order of 1 ps. (sensitivity quickly worsens for longer lifetimes),
- In the **B⁻** signal region, no statistically significant **signal at any mass has been found**,
- Upper limits: \(\text{BR}(B^- \rightarrow \pi^+ \mu^- \mu^-) < 1.3 \times 10^{-8} \) at 95% C.L.

Update:

- **3 fb⁻¹ of data**: collected at the center-of-mass energy: 1/3 of 7 TeV, 2/3 of 8 TeV
- N lifetimes are long enough, providing that the natural decay width is narrower than the **mass resolution** (\(\sim 0 \) and 20 MeV depending on the mass),
- Upper limits on \(\text{BR}(B^- \rightarrow N(\pi^+ \mu^-)\mu^-) \) for **N with lifetimes up to 1000 ps**,
- Upper limit on the **coupling of a single 4th generation Majorana neutrino to \(\mu \).**
Dependency on the neutrino lifetime, τ_N:

- Two selections for the signal $B^- \rightarrow N(\pi^+\mu^-)\mu^-$:
 - Short τ_N (called “S”) – zero lifetime N, a common B vertex is formed from $\pi^+\mu^-\mu^-$ (similar to previous analysis);
 - Longer τ_N up to 1000 ps (called “L”) – N with nonzero lifetime, two vertices reconstructed (new); For lifetimes ≥ 1 ps, the $\pi^+\mu^-$ from B meson decay can appear as significantly detached from the B^- decay vertex.

Dependency on the neutrino mass, m_N:

- The detection efficiency varies as a function of m_N.
- For both S and L selections $\pi^+\mu^-\mu^-$ mass is in the B^- signal window ($\pm 2\sigma$ of the B^- mass, σ - the mass resolution).
The search strategy

The normalization:

- $B^- \rightarrow J/\Psi (\mu^+ \mu^-)K^-$ used to normalize the branching fractions of the decays to heavy neutrinos:
 \[BR(B^- \rightarrow J/\psi K^-, J/\psi \rightarrow \mu^+ \mu^-) = (6.037 \pm 0.256) \times 10^{-5} \]
- 282774 ± 274 signal events, in $m(B^-)$ [5100, 5500] MeV with a B mass resolution of (17.9 ± 0.4) MeV.

Upper limit calculations:

- CLs method used to set upper limits,
- The expected background yields and the total number of events determined within the signal B mass range, ± 2 times the invariant mass resolution, [5238.6, 5319.8] MeV:
 - Total number of events: 19 S events, 60 L events,
 - Background fit yields: 17.8 ± 3.2 S events, 54.5 ± 5.4 L events (in the same region).
Results: Upper limit

Short neutrino lifetimes of 1 ps or less:

\[\text{BR } (B^- \rightarrow \pi^+ \mu^-\mu^-) < 4.0 \times 10^{-9} \text{ at } 95\% \text{ C.L.}\]

- Average detection efficiency
- Total systematic uncertainty: 6.6%.

Scanning across the \(m_N \) spectrum:

- 5 MeV step,
- \(\pm 3\sigma \) search window at each step,
- \(\sigma \) – neutrino mass resolution
Results: Two dimensional upper limits

- For the L sample the detection efficiency changes with τ_N. Hence for L candidates, upper limits has been set as a function of both m_N and lifetime:

- Neutrino mass step size of 5 MeV,
- Lifetime step size of 100 ps,
Results: The coupling of a single 4th generation Majorana neutrino to μ

Model dependent upper limits for the $|V_{\mu 4}|^2$, for each value of m_N extracted using the formula from Atre et al. [1]

- Limits on branching fraction can be converted to limits on the $|V_{\mu 4}|^2$,
- 95\% C.L. limit on $|V_{\mu 4}|$ as a function of m_N.

[1]. Atre et al. The search for heavy Majorana neutrinos, JHEP 05 (2009)
Conclusions

On-shell Majorana neutrinos coupling to muons in the $B^- \rightarrow \pi^+ \mu^- \mu^-$ decay channel as a function of m_N between 250 – 5000 MeV and for lifetimes up to ≈ 1 ns have been searched.

No signal found, upper limits on the $B^- \rightarrow \pi^+ \mu^- \mu^-$ branching fraction and the coupling $|V_{\mu 4}|^2$ as a function of the neutrino mass have been set.

These results supersede previous LHCb results, furthermore computed limits are the most restrictive to date.
Backup
LHCb detector

- $\epsilon_{PID}(\mu) \approx 97\%$
- $\epsilon_{PID}(K) \approx 95\%$
- $\text{MisID (}\pi \rightarrow \mu\text{)} \approx 1\% - 3\%$
- $\text{MisID (}K \rightarrow \pi\text{)} \approx 5\%$

- Muon System
- RICH Detectors specific for LHCb
- Calorimeters
- Tracking System
- Vertex Detector

\[\frac{\sigma}{E} \approx 1\% \times \frac{10\%}{\sqrt{E}[\text{GeV}]} \]

- $\epsilon_{PID}(e) \approx 95\%$
- $\text{MisID (}e \rightarrow h\text{)} \approx 5\%$

- $\sigma(\text{IP}) \approx 20\mu\text{m}$
- $\delta p/p = 0.4 - 0.6\%$
- $\epsilon_{track} > 96\%$
The search strategy

Requirements for candidates:

- μ: $p > 3$ GeV, $p_T > 0.75$ GeV
- h: $p > 2$ GeV, $p_T > 1.1$ GeV
- $\mu^- \pi^+$: $p_T \geq 700$ MeV.

The normalization:
- The well measured decay channel $B^- \rightarrow J/\Psi (\mu^+ \mu^-)K^-$ is used to normalize the branching fractions of the decays to heavy neutrinos:
 \[B(B^- \rightarrow J/\psi K^-, \ J/\psi \rightarrow \mu^+ \mu^-) = (6.037 \pm 0.256) \times 10^{-5} \]

Upper limit calculations:
- CLs method has been used to set upper limits.
- The expected background yields and the total number of events has been determined within the signal B mass range (5238.6 – 5319.8 MeV):
 - Total number of events: 19 S events and 60 L events,
 - Background fit yields:
 - S: 17.8 \pm 3.2 events
 - L: 54.5 \pm 5.4 events (in the same region).
$B^- \rightarrow \pi^+ \mu^- \mu^-$

>> The $\pi^+\mu^-$ mass spectra for both S and L selections within searches for signals as a function of m_N

- Masses of $\pi^+\mu^+\mu^-$ candidates restricted to $\pm 2\sigma$ of B^- mass for the (a) S and (b) L selections,
- The shaded regions indicate the estimated peaking backgrounds.
- Backgrounds that peak under the signal in (b) and (c) are (green) shaded.
- The dotted lines show the combinatorial backgrounds only. The solid line the sum of both backgrounds.
\[B^- \rightarrow \pi^+ \mu^- \mu^- \]

An upper limit on the branching fraction for the S sample

- the average detection efficiency, as determined by simulation, with respect to the normalization mode of 0.687 ± 0.01.
- Included in computations of the limit:
 - the uncertainties on the background yields obtained from the fit to \(m(\pi^+ \mu^- \mu^-) \) distribution,
 - the 6.6% systematic uncertainty:
 - \(B (B^- \rightarrow J/\psi \text{ K}^-) \) (4.2%)
 - modeling of the efficiency ratio (3.5%) and backgrounds (3.5%),
 - relative particle identification efficiencies (0.5%),
 - tracking efficiency differences for kaons versus pions (0.5%),
 - yield of the normalization channel (0.4%).

Note: it is possible for virtual Majorana neutrinos of any mass to contribute to this decay via a process where the b quark transforms to a virtual \(W^- \) and a u quark while the u quark transforms to a virtual \(W^+ \) and a d quark, the ud form a \(\pi^+ \), and the Majorana communicates between the \(W^- \)'s causing emission of two \(\mu^- \) leptons.
Two dimensional upper limits >> The strategy

For the L sample the detection efficiency changes with τ_N hence for L candidates, upper limits has been set as a function of both m_N and lifetime:

- the same scan in mass as before, but applying efficiencies appropriate for individual lifetime values starting at 1 ps up to 1000 ps.

- The number of background events is extracted from the sum of combinatorial and peaking backgrounds in the fit to the $m(\pi^+\mu^-)$ distribution in the same manner as for the S sample.

- The estimated signal yield is the difference between the total number of events computed by counting the number in the interval and the fitted background yield.

- The τ_N dependence has been taken into account by using different efficiencies for each lifetime step.
The strategy

Model dependent upper limits for the $|V_{\mu 4}|^2$, for each value of m_N are extracted using the formula from Atre et al. *The search for heavy Majorana neutrinos*, JHEP 05 (2009), where the total neutrino decay width is a function of m_N and proportional to $|V_{\mu 4}|^2$:

1) The total neutrino decay width, Γ_N, is a function of m_N and proportional to $|V_{\mu 4}|^2$.
2) Model for the total width for Majorana neutrino decay:

$$\Gamma_N = \left[3.95 \cdot m_N^3 + 2.00 \cdot m_N^5 (1.44m_N^3 + 1.14)\right] 10^{-13}|V_{\mu 4}|^2$$

3) To obtain upper limits on $|V_{\mu 4}|^2$ for each value of m_N we assume a value for $|V_{\mu 4}|$, and calculate Γ_N. This allows us to determine the τ_N dependent detection efficiency.
4) To find the branching fraction:

$$\mathcal{B}(B^- \rightarrow \pi^+ \mu^- \mu^-) = \frac{G_F^2 f_B^2 f_\pi f_m^5}{128\pi^2 \hbar} |V_{ub}V_{ud}|^2 \tau_B \left(1 - \frac{m_N}{m_B^2}\right) \frac{m_N}{\Gamma_N} |V_{\mu 4}|^4$$

5) The value of $|V_{\mu 4}|$ is then iterated to match the previously determined upper limit value,
6) Limits have been derived for other experiments by Atre et al. using different assumptions about Γ_N and thus cannot be directly compared.