Production and spectroscopy of Heavy Flavors at LHCb

Dmytro Volyanskyy
Max-Planck-Institut für Kernphysik (Heidelberg, Germany)
on behalf of the LHCb collaboration

28th Les Rencontres de Physique de la Vallée d'Aoste International Conference on Results and Perspectives in Particle Physics (La Thuile 2014)

February 23rd - March 1th, 2014, La Thuile, Aosta Valley, Italy
Outline

- The LHCb experiment
- Latest results on Heavy Flavor spectroscopy:
 - Υ production in pp collisions at 2.76 TeV
 - $\psi(2S)$ polarisation in pp collisions at 7 TeV
 - Exclusive J/ψ and $\psi(2S)$ cross-sections
 - Associative $Z+D$ production
- Summary
The LHCb experiment

- Forward spectrometer with planar detectors

- LHCb uniqueness:
 - tracking, RICH and calorimeters cover the full detector acceptance ($2.0<\eta<5.0$); tracking coverage also in the backward region ($-4.0<\eta<-1.5$)
 - covers just ~4% of the solid angle but captures ~25% of heavy quark pairs produced at the LHC
 - ability to study low-p_T processes at large η

- heavy quark pair production at the LHC:
 - fraction of $\bar{b}b$ pairs in the acceptance:

<table>
<thead>
<tr>
<th>c.o.m energy</th>
<th>ATLAS/CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 TeV</td>
<td>44%</td>
<td>25%</td>
</tr>
<tr>
<td>14 TeV</td>
<td>41%</td>
<td>24%</td>
</tr>
</tbody>
</table>
The LHCb experiment

- **Excellent tracking performance:** $\delta p/p \sim 0.4$–0.6% for tracks traversing full tracking setup
- **High quality particle identification:** robust hadron ID + γ/lepton/hadron separation
- **Selective and flexible trigger system**
The LHCb experiment

- ~93% data taking efficiency
- ~99% r/o channels operational
- ~99% of accumulated data are useful for physics analyses
- Luminosity leveling: constant and moderate interaction rate throughout the data taking periods
- Smooth data taking in 2011-2012 regardless high luminosity running

In the years 2010-2012:

- 2×10^{14} visible pp interactions
- 6×10^{12} visible $\bar{c}c$ quark pairs
- 3×10^{11} visible $\bar{b}b$ quark pairs

were produced in the LHCb acceptance

Ability to perform different measurements with pp collisions at 2.76 TeV, 7 TeV and 8 TeV and with pPb collisions at 5 TeV
Latest LHCb results on Heavy Flavors

- **Measurement of Υ production in pp collisions at 2.76 TeV**

 submitted to EPJ C

- **Measurement of $\psi(2S)$ polarisation in pp collisions at 7 TeV**

 → LHCb-PAPER-2013-067 (to be submitted to EPJ C)

- **Updated measurements of exclusive J/ψ and $\psi(2S)$ production cross-sections in pp collisions at 7 TeV**

 submitted to Journal of Physics G

- **Observation of associated production of a Z boson with a D meson in the forward region**

 submitted to JHEP

Further exploration of heavy quarkonia properties and studies of associated particle production to probe double-parton scattering at the LHC
\(\Upsilon \) production at 2.76 TeV

- Complementary analysis to those performed at 7 and 8 TeV:
 - allows studies of bottomonium hadroproduction as a function of collision energy in the forward region: unique input to theory

- Performed with 3.3 pb\(^{-1}\) of 2013 2.76 TeV pp data:
 - measurement of single differential production cross-sections as functions of \(p_T \) and \(y \) for \(\Upsilon(1S) \), \(\Upsilon(2S) \) and \(\Upsilon(3S) \)
 - total uncertainties dominated by statistical effects
 - \(\Upsilon(2S)/\Upsilon(1S) \) and \(\Upsilon(3S)/\Upsilon(1S) \) are measured too
 - kinematic range: \(p_T < 15 \text{ GeV} \) and \(2.0 < y < 4.5 \) (the same as in the previous studies)
Υ production at 2.76 TeV

- Measurements are well described by the NLO NRQCD predictions (yellow band) at large p_T, while these underestimate the data at low p_T. → Phys. Rev. Lett. 112, 032001 (2014)

- Total cross-sections for $p_T < 15$ GeV and $2.0 < y < 4.5$:

 $\sigma (pp \rightarrow \Upsilon(1S)X) \times B (\Upsilon(1S) \rightarrow \mu^+\mu^-) = 1.111 \pm 0.043 \pm 0.044 \, \text{nb}$

 $\sigma (pp \rightarrow \Upsilon(2S)X) \times B (\Upsilon(2S) \rightarrow \mu^+\mu^-) = 0.264 \pm 0.023 \pm 0.011 \, \text{nb}$

 $\sigma (pp \rightarrow \Upsilon(3S)X) \times B (\Upsilon(3S) \rightarrow \mu^+\mu^-) = 0.159 \pm 0.020 \pm 0.007 \, \text{nb}$

- Total cross-sections for $p_T < 15$ GeV and $2.5 < y < 4.0$:

 $\sigma (pp \rightarrow \Upsilon(1S)X) \times B (\Upsilon(1S) \rightarrow \mu^+\mu^-) = 0.670 \pm 0.025 \pm 0.026 \, \text{nb}$

 $\sigma (pp \rightarrow \Upsilon(2S)X) \times B (\Upsilon(2S) \rightarrow \mu^+\mu^-) = 0.159 \pm 0.013 \pm 0.007 \, \text{nb}$

 $\sigma (pp \rightarrow \Upsilon(3S)X) \times B (\Upsilon(3S) \rightarrow \mu^+\mu^-) = 0.089 \pm 0.010 \pm 0.004 \, \text{nb}$

→ reduced kinematic range: reference measurement for the analysis with pPb data at 5 TeV

arXiv:1402.2539 [hep-ex]
Υ production at 2.76 TeV

- Ratios of $\Upsilon(2S)/\Upsilon(1S)$ and $\Upsilon(3S)/\Upsilon(1S)$ as functions of p_T and y:

\[\mathcal{R}_{2S/1S}, \mathcal{R}_{3S/1S} \]

\[p_T \text{ [GeV/c]} \quad y \]

\[\text{LHCb} \]

\[\Upsilon(2S)/\Upsilon(1S), \Upsilon(3S)/\Upsilon(1S) \]

→ consistency with the corresponding results obtained at higher collision energies

arXiv:1402.2539 [hep-ex]
ψ(2S) polarisation at 7 TeV

- Performed with 1 fb$^{-1}$ of 7 TeV pp collision data:
 - angular analysis of $\psi(2S) \rightarrow \mu^+\mu^-$ decay
 - angular observables measured as functions of p_T and y in the helicity and Collins-Soper frames by studying the angular distributions of muons
 - kinematic range: $3.5 < p_T < 15$ GeV and $2.0 < y < 4.5$
 - data disagrees with NLO CSM, while NLO non-relativistic QCD models provide good description at low p_T

- $\psi(2S)$ meson exhibits neither large transverse nor longitudinal polarisation
Exclusive J/ψ and $\psi(2S)$ at 7 TeV

- Pomeron/photon exchange diffractive processes calculable with pQCD:

 - Sensitivity to saturation effects: probing Bjorken-x down to $\sim 5 \times 10^{-6}$
 - Possibility to constrain gluon PDF: theoretical predictions depend on it
Exclusive J/ψ and $\psi(2S)$ at 7 TeV

- Performed with 0.93 fb$^{-1}$ of 7 TeV pp collision data:
 - J/ψ / $\psi(2S) \rightarrow \mu^+\mu^-$ decay modes
 - kinematic range: $2.0 < \eta(\mu) < 4.5$

- Clean experimental signature: empty event except for two muon tracks
 - large rapidity gap over the backward region
 - feed-down contributions estimated from simulation and normalised using the data
 - inelastic background determined from p^2_T distributions
Exclusive J/ψ and $\psi(2S)$ at 7 TeV

- Single differential cross-sections as a function of rapidity:

\rightarrow NLO describes data better than LO based predictions

\rightarrow better description for J/ψ than for $\psi(2S)$

\rightarrow uncertainties are highly correlated between the bins
Exclusive J/ψ and $\psi(2S)$ at 7 TeV

- Total cross-sections: data vs theory
 - scaled with the dimuon branching fractions
 - kinematic range: $2.0 < \eta(\mu) < 4.5$

→ good agreement with theoretical predictions

J/ψ
- Goncalves and Machado
- Jones, Martin, Ryskin, Teubner
- Motyka and Watt
- Schaefer and Szczurek
- STARLIGHT
 - (Klein,Nystrand)

ψ(2S)
- STARLIGHT
- SUPERCHIC
- LHCb

JHEP 1311 (2013) 085
Z+D observation at 7 TeV

- Associated production of Z+D mesons - unique insight into:
 - double parton scattering (DPS)
 - charm production mechanism and charm parton distribution inside the proton

- Performed with 1 fb$^{-1}$ of 7 TeV pp data:
 - kinematic range: 60<$M(\mu^+\mu^-)$<120 GeV; $p_T(\mu)$>20 GeV; 2.0<$\eta(\mu)$<4.5; 2<$p_T(D)$<12 GeV; 2.0<$y(D)$<4.0
 - $Z\rightarrow\mu^+\mu^-$; $D^0\rightarrow\pi^+K^-$; $D^+\rightarrow\pi^+\pi^+K^-$ decay modes
 - $Z+D^0$: 7 reconstructed candidates; $Z+D^+$: 4 reconstructed candidates
 - 5.1σ combined significance: first observation
 - background contamination mainly due to $Z+b(D)$ feed down contribution - included in the systematics

→ color scale shows the PDF value at any given point

25.02.2014, La Thuile 2014 Heavy Flavor spectroscopy with LHCb by D. Volyanskyy
Z+D observation at 7 TeV

- Cross-section (in pb): data vs theory
 - contribution from SPS and DPS production mechanisms

 - SPS: NLO parton-level integrator, MCFM
 - DPS: factorisation approximation

\[
\sigma_{Z \rightarrow \mu^+ \mu^-, D}^{DPS} = \frac{\sigma_{Z \rightarrow \mu^+ \mu^- \sigma_D}}{\sigma_{\text{eff}}}
\]

<table>
<thead>
<tr>
<th></th>
<th>measured</th>
<th>MCFM massless</th>
<th>MCFM massive</th>
<th>DPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z + D^0)</td>
<td>2.50 ± 1.12 ± 0.22</td>
<td>0.85(^{+0.12}{-0.07})(^{+0.11}{-0.17}) ± 0.05</td>
<td>0.64(^{+0.01}{-0.01})(^{+0.08}{-0.13}) ± 0.04</td>
<td>3.28(^{+0.68}_{-0.58})</td>
</tr>
<tr>
<td>(Z + D^+)</td>
<td>0.44 ± 0.23 ± 0.03</td>
<td>0.37(^{+0.05}{-0.03})(^{+0.05}{-0.07}) ± 0.03</td>
<td>0.28(^{+0.01}{-0.01})(^{+0.04}{-0.06}) ± 0.02</td>
<td>1.29(^{+0.27}_{-0.23})</td>
</tr>
</tbody>
</table>

- MCFM underestimates \(Z(\mu^+ \mu^-)+D^0\) and provides good description for \(Z(\mu^+ \mu^-)+D^+\)

- DPS provides reasonable description for \(Z(\mu^+ \mu^-)+D^0\) and overestimates \(Z(\mu^+ \mu^-)+D^+\) production
LHCb provides a great possibility to study different aspects of heavy flavor spectroscopy at different collision energies in a unique, previously unexplored kinematic range - important input to theory!

First 2014 LHCb results on heavy flavor spectroscopy are highly exciting:
- \(\Upsilon \) production at 2.76 TeV is measured for the first time
- \(\psi(2S) \) polarisation at 7 TeV is studied for the first time at forward rapidities
- Associative Z+D production is measured for the first time
- Exclusive \(J/\psi \) and \(\psi(2S) \) cross-section measurements are updated

Existing theoretical models cannot describe all aspects of heavy flavor spectroscopy: LHCb data are helpful to improve things :-)

Stay tuned for further results!
Backup: exclusive J/ψ and $\psi(2S)$

- Photoproduction cross-section as a function of the c.o.m. photon-proton system
 \[\rightarrow H1 \text{ power law fit results are superimposed} \]