The ATLAS Insertable B-Layer
Steve Alkire on behalf of the ATLAS Collaboration
Columbia University

Introduction

Twelve million new channels at the heart of the ATLAS detector 3 cm from IP, the Insertable B-Layer (IBL) is ATLAS’s 4th and innermost silicon pixel layer. Built from the FEI4-B front end chip, one specially designed for the unprecedented occupancy that LHC run 2 brings, and bonded both to planar to new 3D silicon substrate, the IBL will increase substantially the efficiency, quality, and precision of ID tracking at Point 1. In 3.5 years the IBL has been built and integrated with over 99.9% working channels into the ATLAS experiment. This poster introduces the IBL detector and DAQ, as well as the process by which its quality has been measured and achieved.

Design

The ATLAS Insertable B-Layer was designed with the following physics goals in mind:

- Tracking performance: A 4th silicon measurement 3 cm from the IP enhances reconstructed track quality and increases impact parameter resolution resulting in better b-tagging efficiency.
- Tracking robustness: The fourth layer ensures the required three measurements for curved track reconstruction will remain in light of expected pixel degradation.
- Increased luminosity and pileup: the FEI4 accommodates the increased charged particle flux from reduced radius and eventual High Luminosity LHC beam conditions with decreased pixel size and improved readout design, Figure 2.
- Radiation dosage: the IBL was designed to be robust against large radiation doses, especially from unexpected events such as beam failures.

The Insertable B-Layer

Figure 2: The FEI4 shows significantly reduced hit loss over the existing pixel FE in the IBL geometry across the range of expected beam conditions expected from 2015 - 2021.

The ATLAS Insertable B-Layer was designed with the following physics goals in mind: The ATLAS Insertable B-Layer was designed with the following physics goals in mind: the ATLAS Insertable B-Layer was designed with the following physics goals in mind:

- Tracking performance: A 4th silicon measurement 3 cm from the IP enhances reconstructed track quality and increases impact parameter resolution resulting in better b-tagging efficiency.
- Tracking robustness: The fourth layer ensures the required three measurements for curved track reconstruction will remain in light of expected pixel degradation.
- Increased luminosity and pileup: the FEI4 accommodates the increased charged particle flux from reduced radius and eventual High Luminosity LHC beam conditions with decreased pixel size and improved readout design, Figure 2.
- Radiation dosage: the IBL was designed to be robust against large radiation doses, especially from unexpected events such as beam failures.

The FEI4-B Front End

A 2cm x 2cm chip, the FEI4-B contains 26880 pixels, with end of chip logic for buffering, error correction, and I/O. Figure 3. Each pixel combines a tiny analog amplifier and discriminator with a digital hit processing and buffer circuit. The amplifier and discriminator levels of each pixel are calibrated to correct for differences in pixel manufacturing and degradation resulting from radiation. The FEI4-B runs in two primary modes: data-taking and calibration. In data-taking mode, the FEI4-B operates independently to prepare hits into packages that are sent to the DAQ chain for readout via optical link. In calibration mode, the FEI4-B responds to commands to facilitate testing and chip configuration.

Construction and Testing

The IBL is assembled from fourteen staves, each bringing to 32 FEIs the necessary structure and services, including: cooling, high and low voltage, and data input/output. Each stave has in turn been assembled from thoroughly-tested and ranked individual FEIs. Each stave has undergone a 3 to 5-day series of tests, including digital and analog injection scans, triggering on external Americium and Cobalt sources, hot-cold thermal cycling, and individual pixel tuning, Figure 4.

Data Acquisition

Housed in a single VME crate, 14 Read-out Driver (ROD)/Back of Crate Card (BOC) pairs receive data via optical link at a rate of 160 MB/s per FE-I4. Several Spartan6 slave FPGAs build events on the BOC and histogram the resulting hit data on the ROD. A Virtex5 master FPGA with an integrated PPC processor running C++ directs resources on the ROD/BOC pair during calibration and data-taking. An external fit farm is used for the processing of histograms produced by the ROD slave FPGAs.

Status and Stave Ranking

Twenty IBL staves were ranked by minimizing a metric, V, designed to maximize the η - φ coverage of the detector:

\[
V = \frac{\sum_{\text{all pixels}} \cosh^{-1}(\eta)}{\sum_{\text{all pixels}} \cosh^{-1}(\eta_{i})}
\]

where \(\cosh(\eta) = \frac{dz}{d\eta} \). Staves are constructed with better FEI4 modules placed closer to \(|\eta| = 0 \), as this minimizes the chosen \(V \) values, Figure 6. The detector is built using the fourteen best-performing staves. A total of 20 staves were built with 18 of them full-filling all specifications. The selection results in a less than 0.1% bad pixel rate.

References