mSUGRA celebrates its 20th year

The SUGRA20 conference recently celebrated the 20th anniversary of the invention of minimal supergravity grand unification, or mSUGRA, as Paul Frampton and Pran Nath describe.

The invention of minimal supergravity grand unification — mSUGRA — had a profound influence on the phenomenology of supersymmetry, and now mSUGRA is a leading candidate for yielding new physics beyond the Standard Model. A current assessment of mSUGRA in the search for unification and supersymmetry was the focus of the SUGRA20 conference held on 17–20 March at Northeastern University in Boston, where mSUGRA first evolved 20 years ago.

In supersymmetry, each particle has a superpartner — a sparticle — with a spin that differs by half a unit. The particles and sparticles should have the same mass, for example the mass of a quark should be equal to that of its superpartner, the squark, but this is contrary to observation. A mechanism for breaking supersymmetry is therefore crucial if theories that include supersymmetry are to confront experiment.

Models based on so-called global supersymmetry or rigid supersymmetry lead to a pattern of sparticle masses that are also in contradiction with experiment — for example, a squark mass may lie below the quark mass. They also yield a cosmological constant that is in gross violation of observation. However, both these obstacles are removed in supergravity grand unification and its minimal version, mSUGRA, which was first formulated by Ali Chamseddine, Richard Arnowitt and Pran Nath at Northeastern University in 1982 (Chamseddine et al. 1982).

The framework of supergravity grand unification is the so-called applied supergravity, where matter (quarks, leptons and Higgs particles) is coupled with supergravity and the potential of the theory is not positive definite. The breaking of supersymmetry in mSUGRA takes place through a “super Higgs” effect where the massless gravitino, which is the spin 3/2 partner of the graviton, becomes massive by “eating” the spin 1/2 component of a chiral super Higgs multiplet. This is a phenomenon akin to the Higgs–Kibble mechanism through which the W boson gains mass by absorbing the charged compo...
mSUGRA has an ingenious mechanism to protect the electroweak scale from "pollution" by the high-energy scales of the Planck mass $M_{\text{Planck}} (2.4 \times 10^{18} \text{GeV})$ and the grand unification mass $M_{\text{GUT}} (2 \times 10^{16} \text{GeV})$. In mSUGRA, supersymmetry breaking occurs in the hidden sector and is communicated by gravitational interactions to the physical sector, where physical fields such as leptons, quarks, Higgs and their superpartners reside (see figure 1). Since the vacuum energy of the theory is not positive definite, it is possible to fine-tune the vacuum energy to zero (or nearly zero) after the spontaneous breaking of supersymmetry, and so avoid any contradiction with experiment. Further, as a consequence of the communication between the hidden and physical sectors, soft breaking terms arise in the physical sector. These give masses to sparticles and generate non-vanishing trilinear couplings among scalar fields. Thus, for example, the squarks and selectrons gain masses of the size of the electroweak scale and fall within reach of colliders such as the Tevatron at Fermilab and the Large Hadron Collider (LHC) at CERN.

A remarkable aspect of the hidden-sector/physical-sector mechanism is that the mass generation in the physical sector does not involve terms of the size of M_{Planck} — which is fortunate given the large size of M_{Planck}. A similar result was found by Riccardo Barbieri of Pisa, Sergio Ferrara of CERN and Carlos Savoy of Saclay, who also achieved soft breaking through the hidden-sector mechanism (Barbieri et al. 1982). Equally remarkable is the result found by Chamseddine, Amowitt and Nath that the grand unification scale M_{GUT} cancels in the computation of soft parameters (Chamseddine et al. 1982, Nath et al. 1983). The soft parameters are thus shielded effectively from the high-energy scales of M_{Planck} and M_{GUT}. There are many later analyses where grand unification within supergravity has been discussed in further detail (Hall et al. 1983, Nilles 1984). In mSUGRA, universality of the soft parameters leads to a suppression of the flavour-changing neutral currents that is compatible with experiment. Furthermore, the mSUGRA model can be easily generalized to include non-universalities in certain sectors of the theory, maintaining consistency with experiment.

mSUGRA provides a dynamical explanation of the electroweak symmetry breaking that splits the weak nuclear force from electromagnetism and gives mass to the W and Z bosons. In the Standard Model this is done by giving a negative squared mass to the Higgs field, which can be considered contrived. In mSUGRA the breaking of supersymmetry naturally triggers the breaking of electroweak symmetry and leads to predictions of masses of sparticles lying in the 100 GeV–TeV energy range.

The SUGRA20 conference opened with talks that looked at the current and future prospects for experimental tests of mSUGRA. Xerxes Tata of Hawaii discussed the constraints on the sparticle masses from various experiments including the recent Brookhaven experiment on $g_\mu-2$. Speakers in several other talks pointed out that the most direct test of mSUGRA and other competing models will come in accelerator experiments at Run II of the Tevatron, at the LHC and at the Next Linear Collider (NLC). Such tests for the Tevatron were outlined by Michael Schmitt of Northwestern, while Frank Paige from Brookhaven National Laboratory and Stephano Villa of California, Irvine, discussed the possibilities for the ATLAS and CMS detectors at the LHC. Richard Amowitt from Texas A&M discussed similar tests for the NLC.

mSUGRA also possesses the remarkable feature that it provides a natural candidate — the so-called neutralino — for cold dark matter in the universe. The talks by Howard Baer of Florida and Keith Olive of Minnesota revealed that the predictions of cold dark matter in mSUGRA and its extensions are consistent with the most recent data from the satellite experiment, the Wilkinson Microwave Anisotropy Probe. David Cline from UCLA later outlined future dark-matter experiments (GENIUS, ZEPLIN) to test mSUGRA and other competing models.

There were also talks in several areas complementary to the main theme of the conference. Mary K Gaillard of Berkeley discussed the connection of SUGRA models to strings, while the idea of conformal quiver gauge theories with a novel type of grand unification at about 4 TeV was explained by Paul Frampton of North Carolina. Other more theoretical ideas included talks on strong gravity by Ali Chamseddine from Beirut, on M theory by Michael Duff of Michigan, and on non-commutative geometry by Bruno Zumino from Berkeley.

Northeastern University, as a key player in the birth of mSUGRA 20 years ago, provided an ideal location for SUGRA20. While mSUGRA remains only a model, more than 100 participants at the conference expressed optimism that future experimental data may convert it from a theoretical model to an established theory.

Paul Frampton, University of North Carolina at Chapel Hill, and Pran Nath, Northeastern University, Boston.
2004 MRS SPRING MEETING

CALL FOR PAPERS

www.mrs.org/meetings/spring2004/

SCHEDULED SYMPOSIA

ELECTRONICS, SPINTRONICS, AND PHOTONICS
A: Amorphous and Nanocrystalline Silicon Science and Technology—2004
B: High-Mobility Group-IV Materials and Devices
C: Silicon Front-End Junction Formation—Physics and Technology
D: High-k/All-Silicon Interconnects with High-k Dielectrics
E: Integration Challenges in Next-Generation Oxide-Based Nanoelectronics
F: Materials, Technology, and Reliability for Advanced Interconnects and Low-k Dielectrics
G: Semiconductor Spintronics
H: Hydrogen in Semiconductors
I: Flexible Electronics—Materials and Device Technology
J: Silicon Carbide—Materials, Processing, and Devices
K: Advances in Chemical Mechanical Polishing
L: New Materials for Microelectronics

NANO- AND MICROSTRUCTURED MATERIALS
M: Nanoparticles and Nanowire Building Blocks—Synthesis, Processing and Characterization
N: Interfacial Engineering for Optimum Properties
O: Advanced Microsystems—Integration with nanotechnology and biomaterials
P: Nanoscale Materials and Modeling—Interactions Among Processing, Microstructure, and Mechanical Properties
Q: Precise Placement of Nanoscale-Size Components
R: Three-Dimensional Nanoengineered Assemblies
S: Nanoscale Materials in Alternative Energy Devices

MOLECULAR, BIOLOGICAL, AND HYBRID MATERIALS
T: Molecular Electronics
U: Printing of Materials in Photonics, Electronics and Biotechnology
V: Proteins as Materials
W: Biological and Bio-inspired Materials and Devices

MEETING ACTIVITIES

SYMPOSIUM TUTORIAL PROGRAM
Available only to meeting registrants, the symposium tutorials will concentrate on new, rapidly breaking areas of research.

EXHIBIT
A major exhibit encompassing the full spectrum of equipment, instrumentation, products, software, publications, and services is scheduled for April 13-15 in Moscone West, convenient to the technical session rooms.

PUBLICATIONS DESK
A full display of over 800 books will be available at the MRS Publications Desk. Symposium Proceedings from both the 2003 MRS Spring and Fall Meetings will be featured.

SYMPOSIUM ASSISTANT OPPORTUNITIES
Graduate students who are interested in assisting in the symposium rooms during the 2004 MRS Spring Meeting are encouraged to apply for a Symposium Assistant position.

CAREER CENTER
A Career Center for MRS members and meeting attendees will be offered in Moscone West during the 2004 MRS Spring Meeting.

The 2004 MRS Spring Meeting will serve as a key forum for discussion of interdisciplinary leading-edge materials research from around the world. Various meeting formats—oral, poster, round-table, forum and workshop sessions—are offered to maximize participation.

High Voltage Power Supplies

F.G. Elektronik GmbH
Florianstrasse 2
83024 Rosenheim
GERMANY

Low and High Voltage Power Supplies

for Research Development and Industry

Tel.: +49 8031 2851-0
Fax: +49 8031 61099

Email: info@fug-elektronik.de
Internet: www.fug-elektronik.de

Ask for our new Main Catalogue 2003

You will find more than 650 models
6,5 V ... 200 kV
7 W ... > 100 kW
More than 100 models available from stock.

higher frequency

TECHNICAL HIGHLIGHTS:
- faster rise time, from 0,7 ns
- higher frequency, up to 500 MHz
- higher nominal accuracy over wider frequency range
- faithful rendering up to 500 MHz

WIN ON RED

U.S.A.: sales@gmw.com - Japan: sales@repic.co.jp
Manufacturer: sales@bergoz.com