SPECIFICATION OF FIELD QUALITY IN THE INTERACTION REGION MAGNETS OF THE HIGH LUMINOSITY LHC BASED ON DYNAMIC APERTURE

Y. Nosochkov‡, Y. Cai, M-H. Wang, SLAC, Menlo Park, CA 94025, USA
S. Fartoukh, M. Giovannozzi, R. de Maria, E. McIntosh, CERN, Geneva, Switzerland

Keywords: CERN HL-LHC, FP7 HiLumi LHC, LARP, Beam optics

Abstract

New large aperture Inner Triplet quadrupoles, separation dipoles and the nearby matching quadrupoles will be installed in the low-beta interaction regions (IR) of the high luminosity LHC upgrade (HL-LHC) [1]. The large aperture is necessary for accommodating the increased beam size due to much higher beta functions in these magnets for the low β^* collision optics. The high beta functions will amplify the effects of field errors in the new magnets leading to a smaller dynamic aperture (DA). It is, therefore, critical to evaluate the impact of these errors on the DA and specify the magnet field quality (FQ) satisfying an acceptable DA while being realistically achievable. The study is performed for the HL-LHC lattice layouts SLHCV3.1b and HLLHCV1.0 for collision and injection energies.

Presented at:

5th International Particle Accelerator Conference, Dresden, Germany

Geneva, Switzerland
June, 2014
Abstract

New large aperture Inner Triplet quadrupoles, separation dipoles and the nearby matching quadrupoles will be installed in the low-beta interaction regions (IR) of the high luminosity LHC upgrade (HL-LHC) [1]. The large aperture is necessary for accommodating the increased beam size due to much higher beta functions in these magnets for the low β^* collision optics. The high beta functions will amplify the effects of field errors in the new magnets leading to a smaller dynamic aperture (DA). It is, therefore, critical to evaluate the impact of these errors on the DA and specify the magnet field quality (FQ) satisfying an acceptable DA while being realistically achievable. The study is performed for the HL-LHC lattice layouts SLHCV3.1b and HLLHCV1.0 for collision and injection energies.

INTRODUCTION

The beta-functions at the Interaction Points (IP) of the high luminosity LHC upgrade lattice (HL-LHC) [2] at collision energy will be significantly lower than in the nominal LHC. Consequently, the β-values in the Inner Triplet (IT) and the nearby magnets will be much higher. To accommodate the resulting larger beam size at these locations, new large aperture magnets will be installed in the experimental insertions IR1 and 5 [3]: the Nb$_3$Sn superconducting (SC) IT quadrupoles with 150 mm coil aperture, Nb-Ti SC separation dipoles D1 and D2 with 160 mm and 105 mm aperture, respectively, SC Q4-quadrupoles with 90 mm aperture, and longer Q5 quadrupoles with 70 mm aperture (see magnet development in Refs. [3–8]). The high beta-functions will amplify beam distortions caused by field errors in these magnets, leading to a smaller dynamic aperture (DA). A sufficiently large DA is necessary for an efficient injection and long beam lifetime. It is, therefore, crucial to evaluate the field error effects of the new magnets on the DA and specify realistically achievable FQ satisfying an acceptable DA.

The IT FQ has been previously optimized for the SLHCV3.01 lattice at collision energy of 7 TeV [9], and the initial evaluation of error effects of the D1, D2, Q4, Q5 magnets was performed [10]. This study is extended to the more recent lattices SLHCV3.1b [3] and HLLHCV1.0 [2] for both collision and injection energies.

FIELD QUALITY

The non-linear magnetic FQ of LHC magnets is defined by the following expansion [14]

$$B_y + i B_x = 10^{-4} B_N \sum_{n=N}^{\infty} (b_n + i a_n) \left(\frac{x + iy}{r_0} \right)^{n-1}, \quad (1)$$

where the a_n, b_n coefficients are determined at a reference radius r_0, and B_N is the main field at r_0. Furthermore, each a_n and b_n is composed of the mean (a_{nm}, b_{nm}), uncertainty and random terms, where the uncertainty and random values are randomly generated based on their Gaussian sigmas a_{nm}, b_{nm} and a_{nr}, b_{nr}, respectively (see, e.g., Ref. [13]).

To make sure the FQ specifications for the new magnets are realistic, one can use their field estimates obtained from magnet design and scaling of measured field of the existing magnets as a baseline for the optimization. The previously optimized IT specifications at 7 TeV [9] were updated to take into account the additional IT correctors for a_5, b_5, a_6 errors in the new lattices - hence, the corresponding field terms had been increased by a factor of 2 to 5. These specifications will be referred to as IT$_{error_table_v66}$. Estimate of the D1 FQ is based on magnet design and referred to as D1$_{error_table_v1}$ [15]. Due to the evolution of the D2 dipole design, three versions of the D2 FQ were used in the study referred to as D2$_{error_table_v3}$, v4, and v5 [16]. The D2 low order terms at 7 TeV in these tables are shown in Table 1. Estimates for the Q4 and Q5 magnets are based on scaling of measured field of the existing magnets.
MQY quadrupole and referred to as Q4_errortable_v1 and Q5_errortable_v0, respectively. All these FQ tables can be found at the official LHC repository on [18, 19].

Table 1: Evolution of low order terms of the estimated D2 FQ at 7 TeV ($r_0 = 35$ mm).

<table>
<thead>
<tr>
<th>n</th>
<th>a_{nm}</th>
<th>a_{nu}</th>
<th>a_{nr}</th>
<th>b_{nm}</th>
<th>b_{nu}</th>
<th>b_{nr}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.679</td>
<td>0.679</td>
<td>65.0</td>
<td>3.000</td>
<td>3.000</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.282</td>
<td>0.282</td>
<td>-30.0</td>
<td>5.000</td>
<td>5.000</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.444</td>
<td>0.444</td>
<td>25.0</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.152</td>
<td>0.152</td>
<td>-4.0</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.176</td>
<td>0.176</td>
<td>-0.0</td>
<td>0.060</td>
<td>0.060</td>
</tr>
</tbody>
</table>

The desired minimum DA (among all seeds and phase angles) at collision energy is $\approx 10\sigma$. Tracking with the IT field of IT_errortable_v66 and without the D1, D2, Q4, Q5 errors results in $DA_{\text{min}} = 10.38\sigma$ which is acceptable. Hence the IT specifications optimized for the SLHCV3.01 lattice are also valid for the SLHCV3.1b lattice.

As a next step, impact of the D1, D2, Q4, Q5 field errors on the DA was verified. The Q4 and Q5 estimated field errors produced negligible effect on the DA, hence this FQ is acceptable. Impact of the D1 estimated errors is mostly due to the relatively large “allowed” mean terms b_{nm} and b_{nu} terms. DA_{min} is the minimum DA over 60 seeds, and DA_{ave} is the minimum value of the average DA for all angles. The low order D1 errors have negligible effect since they are compensated by the included IT correctors of order $n=3-6$. To reduce the impact of the b_{7m} and b_{9m} terms, while keeping them realistic, it is proposed to reduce them by a factor of 2 (to 0.2 and -0.295, respectively) relative to D1_errortable_v1.

Two versions of the estimated D2 FQ were used for the SLHCV3.1b tracking: D2_errortable_v3 and D2_errortable_v4. The v3 estimate was obtained for a shorter magnet, hence the $b_{2}-b_{4}$ terms are rather large due to field saturation. These terms showed a strong impact on the DA. The b_{2} affected the linear optics by increasing β^*, thus resulting in too optimistic DA. To avoid this effect the b_{2} was set to zero in all future tracking, assuming it can be reduced and the IP beta will be corrected. Strong impact of the D2 b_{3} is shown in Fig. 2. A large effect is also produced by the b_{4}. Effects of feed-down due to orbit in the straight D1 and D2 were found very small. To maintain the DA_{min} near 10σ, the b_{3}, b_{4} terms must be reduced an order of magnitude relative to D2_errortable_v3. These terms had been, indeed, much improved in D2_errortable_v4 update (see Table 1). Following the tracking results, the proposed further adjustment for the $v4$ table is to reduce the b_{2} to ≈ 1.0 and b_{3m} from 3.0 to 1.5. The resulting DA_{min} and DA_{ave} at 7 TeV with all new magnet errors and adjustments are 9.90σ and 11.64σ, respectively, which is acceptable.

The β^* for SLHCV3.1b lattice at 450 GeV is 5.5 m, with a factor of 35 lower peak beta functions in the IR magnets compared to the collision optics. Beam sizes in these magnets are also reduced even though the emittance is a factor of 16 larger. Therefore, the impact of field errors of the new magnets will be much smaller, and the use of the IT correctors is a priori not needed. Figure 3 shows very small DA sensitivity to the new magnet field errors. Hence, their FQ at injection based on the present estimates are acceptable. The resulting DA_{min}, DA_{ave} with all the errors are 10.16σ.

Figure 1: DA vs. D1 FQ for SLHCV3.1b at 7 TeV (with all magnet errors except D2).

Figure 2: DA vs. b_3 of D2 for SLHCV3.1b at 7 TeV.

Figure 3: DA vs. b_2 scaling factor relative to D2_errortable_v3.
and 10.53σ, respectively, and are acceptable. Another option of the injection optics with β^* of 11 m was verified and showed very similar DA.

The injection DA, however, is $\approx 1 \sigma$ smaller than the nominal LHC DA. Since it is not limited by the IR magnets, other improvements (e.g. in arcs) may need to be considered. Possible options include a larger integer tune split and adjustment of the working point. Figure 4 shows a tune scan indicating effect of the 7th order horizontal resonance close to the current tune (62.28,60.31). Reducing the x and y tunes by about 0.01 would increase the DA by $\approx 0.5 \sigma$.

The β^* at injection for HLLHCV1.0 is 6.0 m, comparable to SLHCV3.1b. Impact of the new magnets field errors on the DA was verified and found insignificant (similar to the SLHCV3.1b). The resulting DA with all errors ($DA_{\min} = 9.95 \sigma$, $DA_{\text{ave}} = 10.46 \sigma$) is acceptable, see Fig. 6.

HLLHCV1.0 LATTICE

The HLLHCV1.0 is the latest version of the HL-LHC lattice. Some of the differences relative to the SLHCV3.1b include: a longer IT with a lower gradient of 140 T/m and higher peak beta function (7%) at collision, adjusted orientation of magnets in the cryostat, new IT corrector positions, and different phase advance between the IP1 and IP5.

Using the previously optimized FQ of the new magnets, the collision DA of the HLLHCV1.0 lattice is reduced by $\approx 1 \sigma$ relative to the SLHCV3.1b to $DA_{\min} = 8.83 \sigma$ and $DA_{\text{ave}} = 10.41 \sigma$. A stronger impact of the D2 b_3 and b_4 terms of the previously adjusted D2_error_table_v4 was noticed. Since the b_{3m} had been already reduced in this table, the next step to try was to reduce the b_{4m} by half. This improved the DA to $DA_{\min} = 9.14 \sigma$ and $DA_{\text{ave}} = 11.07 \sigma$. Further improvement was achieved when using the most recent D2 field estimate D2_error_table_v6 [17] (see Table 1), where the b_2, b_3 terms are reduced at the expense of somewhat larger higher order terms. In this case, the $DA_{\min} = 9.85 \sigma$ and $DA_{\text{ave}} = 12.47 \sigma$, as shown in Fig. 5, which is acceptable and comparable to the DA of the SLHCV3.1b. The reasons for such noticeable improvement will need to be further analyzed.

CONCLUSION

DA evaluation for the SLHCV3.1b and HLLHCV1.0 lattices using the latest FQ estimates for the new large aperture IT, D1, D2, Q4 and Q5 magnets determined that an acceptable DA_{\min} of $\approx 10 \sigma$ can be reached at both collision and injection energy with small adjustments of the field quality at collision energy. At injection energy, no adjustments are required since the DA is not limited by the new magnets FQ. The injection DA can be further improved ($\approx 0.5 \sigma$) by a small adjustment of working point.
REFERENCES

[18] /afs/cern.ch/eng/lhc/optics/SLHCV3.1b/errors/

[19] /afs/cern.ch/eng/lhc/optics/HLLHCV1.0/errors/