Searches for CP violation in multibody D decays

Jinlin Fu

INFN Milano
On behalf of LHCb Collaboration

Beauty conference 2014
Edinburgh, 14 - 18 July 2014
Introduction

- CPV is an interference effect:
 at least two amplitudes with different strong and weak phases.
- CPV in charm decays is CKM suppressed in the SM, $\lesssim 0.1\%$.
- Multibody charm decays are a good place to search for CPV:
 very rich resonant structures of interfering amplitudes can give large effects.
 allow to probe CPV in different phase space regions.

Searches at LHCb:

$D^+ \rightarrow \pi^- \pi^+ \pi^+$
$D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$
$D^0 \rightarrow K^+ K^- \pi^+ \pi^-.$

Two model-independent methods are applied:

Miranda and T-odd correlations (New)
Miranda method

- Phase space splitted into different bins. Significance defined between \(CP \) conjugate decays for each bin:

\[
S_{CP}^i = \frac{N_i(D^0) - \alpha N_i(D^0)}{\sqrt{\alpha \left(\sigma_i^2(D^0) + \sigma_i^2(D^0) \right)}} , \quad \alpha = \frac{\sum_i N_i(D^0)}{\sum_i N_i(D^0)} .
\]

\(\alpha \), removes sensitivity of global production and detection asymetries.

\(\sigma_i \), uncertainty of \(N_i \) determination

- A \(\chi^2 \) statistic constructed, from which a \(p \)-value calculated with \(N_{\text{bins}} - 1 \) degree of freedom.

\[
\chi^2 = \sum_i (S_{CP}^i)^2
\]

\(CP \) conserved: pass \(\chi^2 \) test.

\(CPV \): deviation from \(\chi^2 \) distribution.
Miranda analysis $D^+ \rightarrow \pi^- \pi^+ \pi^+$

Reconstructed with a data set of 1 fb$^{-1}$. Sensitive to 1$^\circ$ in phase difference or 2% in amplitude difference.

Control sample 2.7M $D^+_s \rightarrow \pi^- \pi^+ \pi^+$

Tested with adaptive binning schemes of 20, 30, 40, 49 and 100 bins. Results consistent with no CPV at current sensitivities with the p-values above 50%.

Tested with uniform binning schemes of 20, 32, 52 and 98 bins. Results consistent with no CPV with the p-values above 90%.

No single bin in any of the binning schemes presents an absolute S_{CP} value larger than 3.
$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$, $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- Reconstructed with a data set of 1 fb$^{-1}$. Sensitive to 10° in phase difference or 10% in amplitude difference.
- Two-dimensional unbinned likelihood fits to $m(hhhh)$ and Δm, sPlot method for signal and background separation.

57k $D^0 \rightarrow K^- K^+ \pi^+ \pi^-$

330k $D^0 \rightarrow \pi^- \pi^+ \pi^+ \pi^-$
Miranda analysis $D^0 \rightarrow K^+K^-\pi^+\pi^-, D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$

- The phase space more complicated than 3-body decays, can be described with five invariant mass-squared combinations of final particles.

- An adaptive binning algorithm devised to partition the phase space into 5-dimensional hypercubes.

- Results consistent with no CPV with p-values of 9.1% for $D^0 \rightarrow K^+K^-\pi^+\pi^-$, and 41% for $D^0 \rightarrow \pi^+\pi^-\pi^+\pi^-$.

- Cross checked with 16, 64 and 256 binning schemes, all results consistent with no CPV.
T-odd correlations method: $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (New)

- T-odd triple products: in D^0 (\bar{D}^0) rest frame.
 \[
 C_T \equiv \vec{p}_{K^+} \cdot (\vec{p}_{\pi^+} \times \vec{p}_{\pi^-}), \text{ for } D^0 \\
 \bar{C}_T \equiv \vec{p}_{K^-} \cdot (\vec{p}_{\pi^-} \times \vec{p}_{\pi^+}), \text{ for } \bar{D}^0
 \]

- T-odd observable:
 \[
 A_T \equiv \frac{\Gamma(C_T>0) - \Gamma(C_T<0)}{\Gamma(C_T>0) + \Gamma(C_T<0)}, \text{ measured in } D^0 \text{ decays}
 \]
 \[
 \bar{A}_T \equiv \frac{\Gamma(-\bar{C}_T>0) - \Gamma(-\bar{C}_T<0)}{\Gamma(-\bar{C}_T>0) + \Gamma(-\bar{C}_T<0)}, \text{ measured in } \bar{D}^0 \text{ decays}
 \]
 True CP-violating observable: cancel FSI effects
 \[
 a^{T-\text{odd}}_{CP} = \frac{1}{2} (A_T - \bar{A}_T)
 \]

Sensitivity using T-odd correlations

- Measurement of a_{CP}^{T-odd} is different from S_{CP}:
 - Complementary approach to the search for CPV.
 - $a_{CP}^{T-odd} \propto \sin(\phi) \cos(\delta)$, $S_{CP} \propto \sin(\phi) \sin(\delta)$.

 ϕ weak phase, δ strong phase of two interfering amplitudes.
 - Different sensitivity to CPV:
 S_{CP} vanishes for $\delta = 0$, while a_{CP}^{T-odd} is maximal.

- The measurement a_{CP}^{T-odd} is affected by small systematic uncertainties:
 - a_{CP}^{T-odd} is not sensitive to D^0/\bar{D}^0 production asymmetry.
 - a_{CP}^{T-odd} is not sensitive to detector charge reconstruction asymmetry.
Experimental status

- Previous measurements of $a_{CP}^{T-\text{odd}}$ consistent with no CPV.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>N_{sig}</th>
<th>$a_{CP}^{T-\text{odd}}(D^0)$</th>
<th>$a_{CP}^{T-\text{odd}}(D^+)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$</td>
<td>FOCUS(2005) 800</td>
<td>$(1.0 \pm 5.7 \pm 3.7)%$</td>
<td>$(2.3 \pm 6.2 \pm 2.2)%$</td>
</tr>
<tr>
<td></td>
<td>Babar(2010) 47k</td>
<td>$a_{CP}^{T-\text{odd}}(D^0)$ = $(1.0 \pm 5.7 \pm 3.7)%$</td>
<td>$a_{CP}^{T-\text{odd}}(D^0)$ = $(0.10 \pm 0.51 \pm 0.44)%$</td>
</tr>
<tr>
<td>$D_{(s)}^+ \rightarrow K^+ K_S^0 \pi^+ \pi^-$</td>
<td>FOCUS(2005) 500</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(2.3 \pm 6.2 \pm 2.2)%$</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(−3.6 \pm 6.7 \pm 2.3)%$</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(2.3 \pm 6.2 \pm 2.2)%$</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(−3.6 \pm 6.7 \pm 2.3)%$</td>
</tr>
<tr>
<td></td>
<td>BaBar(2011) 20k</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(−1.20 \pm 1.00 \pm 0.46)%$</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(−1.36 \pm 0.77 \pm 0.34)%$</td>
</tr>
<tr>
<td></td>
<td>30k</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(−1.20 \pm 1.00 \pm 0.46)%$</td>
<td>$a_{CP}^{T-\text{odd}}(D^+)$ = $(−1.36 \pm 0.77 \pm 0.34)%$</td>
</tr>
</tbody>
</table>

T-odd correlations analysis: $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ (New)

- D^0 tagged using semileptonic B decays $B \rightarrow D^0 \mu^- X$.
- 171k $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ reconstructed with a data set of 3 fb$^{-1}$.
- Preliminary results, LHCb-PAPER-2014-046 is in preparation.
Analysis Strategy

- Dataset split into 4 samples depending on D^0 flavor and C_T value, the number of signal events retrieved by simultaneous fit to the four distributions of $m(K^+K^-\pi^+\pi^-)$. Asymmetry parameters A_T, \bar{A}_T extracted from the fit.

\[
N_{D^0, C_T>0} = \frac{1}{2} N_{D^0} (1 + A_T),
\]

\[
N_{D^0, C_T<0} = \frac{1}{2} N_{D^0} (1 - A_T),
\]

\[
N_{\bar{D}^0, -\bar{C}_T>0} = \frac{1}{2} N_{\bar{D}^0} (1 + \bar{A}_T),
\]

\[
N_{\bar{D}^0, -\bar{C}_T<0} = \frac{1}{2} N_{\bar{D}^0} (1 - \bar{A}_T).
\]

- Measurements of asymmetry parameters in different regions of the phase space by dividing the 5-dimensional Dalitz plots. The compatibility with no CPV hypothesis tested by $\chi^2 = X^T V^{-1} X$, X, array of a_{CP}^{T-odd} residuals of each bin w.r.t 0.

V, sum of the statistical and the systematic error matrix. a_{CP}^{T-odd}, Gaussian distributed variables, systematic errors are mainly Gaussian.

- Measurements of asymmetry parameters as a function of D^0 proper time.
Phase space integrated measurement (1) (New)

The simultaneous fit to the full data sample for the integrated measurement.
Asymmetries parameters: Preliminary

\[A_T = (-7.18 \pm 0.41 \text{(stat)} \pm 0.13 \text{(syst)})\% \]
\[\bar{A}_T = (-7.55 \pm 0.41 \text{(stat)} \pm 0.12 \text{(syst)})\% \]
\[a_{CP}^{T-\text{odd}} = (0.18 \pm 0.29 \text{(stat)} \pm 0.04 \text{(syst)})\% \]

consistent with measurements at Babar\[^1\], with a precision improved by more than a factor of 2.

Large asymmetries observed in \(A_T \) and \(\bar{A}_T \) are due to FSI effect\[^2\].

The phase space is divided into 32 bins following a binning scheme based on the Cabibbo-Maksimowicz variables:
\[m_{\pi^+\pi^-}^2, m_{K^+K^-}^2, \cos(\theta_\pi), \cos(\theta_K), \text{ and } \phi. \]

The number of events is consistent in different bins. Other phase space divisions with 8 and 16 bins have been considered for control checks.
Asymmetries over the phase space (New)

\[\text{Asymmetry in } \phi, \cos(\theta_K), \cos(\theta_\pi) \text{ is due to the dynamics of the decay} \]
Results over phase space regions (New)

- Results consistent with no CPV hypothesis with a probability of 74% based on $\chi^2/ndof = 26.4/32$.
- Control checks: results are compatible with no CPV hypothesis at 24% probability for the case of 8 bins and at 28%, 62%, 82% probability for cases of three different 16 bins.
- A_T and \bar{A}_T are significantly different among the different bins: rich resonant structure produce different FSI effects.

$LHCb$ Phase space region

$\chi^2/ndof = 26.4/32$
Measurement of $a_{CP}^{T-\text{odd}}$ as a function of D^0 proper time

- First time measurement of $a_{CP}^{T-\text{odd}}$ as a function of D^0 proper time.
- Proper time divided into 10 bins with similar signal events. Asymmetries measured in each bin.
- The compatibility with no CPV hypothesis verified by means of the χ^2 test.
- $a_{CP}^{T-\text{odd}}$ is consistent with no indirect CPV at 72% probability.
- A_T and \bar{A}_T do not show any significant dependence on the proper time, compatible with a constant at 80% and 34% probability, respectively.
Summary

- A search for CP violation using the Miranda method is performed with a data set of 1 fb^{-1}:
 \[D^+ \rightarrow \pi^- \pi^+ \pi^+ \]
 \[D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- \]
 \[D^0 \rightarrow K^+ K^- \pi^+ \pi^- \]

- A search for CP violation using the T-odd correlations method is performed in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays with a data set of 3 fb^{-1}. Search for CPV in different regions of five dimensional phase space and as a function of D^0 proper time are also presented for the first time. (New)

- All results are consistent with no CPV in D decays.
- Further improvements expected with more statistics at the LHCb.