Electronic Readout Improvement of HMPID in ALICE

Supervisor: Giacomo Volpe (PH-AID-DT)
Mentor: Lazzaro Manlio Minervini (PH-UAI)
Summer Student: Usman Amin Fiaz (PH-AID-DT) [PAKISTAN]
1. INTRODUCTION

ALICE (A Large Ion Collider Experiment) is an experiment at the Large Hadron Collider (LHC) optimized for the study of heavy-ion collisions, at $\sqrt{s_{\text{NN}}} = 2.76$ TeV. The prime aim of the experiment is to study in detail the behavior of matter at high densities and temperatures, in view of probing deconfinement and chiral symmetry restoration.

The High-Momentum Particle Identification Detector (HMPID) is devoted to the identification of charged hadrons, i.e. pions, kaons and protons in the range from 1 to 5 GeV/c. Its structure is based on proximity focusing Ring Imaging Cherenkov (RICH) counters and consists of seven modules mounted in an independent support cradle, which are fixed to the space frame, at the two o’clock position.

Cherenkov photons, emitted when a fast charged particle traverses the 15 mm thick layer of liquid C$_6$F$_{14}$ (perfluorohexane), are detected by a photon counter, which exploits the novel technology of a thin layer of CsI deposited onto the pad cathode of a multi-wire proportional chamber (MWPC). The HMPID detector, with its surface of about 12 sq. meters represents the largest scale application of this technique.

Figure 1: ALICE Experiment and HMPID
The Cherenkov photons refract out of the liquid radiator and reach the CsI-coated pad cathode, located at a suitable distance (the ‘proximity gap’) that allows the contribution of the geometrical aberration to the Cherenkov angle resolution to be reduced. The electrons released by ionizing particles in the proximity gap, filled with CH4, are prevented from entering the MWPC sensitive volume by a positive polarization of the ‘collection’ electrode close to the radiator.

2. ELECTRONIC READOUT

The readout of the HMPID modules is organized according to parallel/serial architecture and is based on the VLSI GASSIPLEX chip, specifically developed to enable the determination of the hit coordinates by centroid measurement. It is characterized by a filtering scheme designed to cope with the shape of the signal delivered by MWPCs and by a long peaking time (1.2 ms) suitable for an external event trigger. An average noise of 1000 e- has been measured on detector.

The 16-channel preamplifier/shaper GASSIPLEX chips, uniformly distributed on the back side of the cathode pad planes, are operated in analog multiplexed ‘Track and Hold’ mode, storing the electric charge into internal capacitors in coincidence with the arrival of a trigger signal. The max total readout time for arrangement is less than 200ms. Afterwards, the data is processed by Altera Cyclone Family FPGAs.

The detection of collisions in the HMPID is translated into some useful information in the form of digital outputs and is processed by means of FPGAs. There’s an electronic board (Readout and Control Board) on every HMPID Module which in turn is connected to a Trigger System that controls the instants for taking the data from detector modules and to the Data Acquisition System (DAQ) that collects the digital data for analysis.

Figure 2: (A) Front Board Electronics using GASSIPLEX [Source: alice-hmpid.web.cern.ch], (B) Altera STRARIX II FPGAs
3. IMPROVEMENT

Previously the FPGAs are programmed in an old version of Hardware description language called AHDL. The improvement of HMPID Readout could be carried out just by improving the language to a better, high level and modern language: the VHDL. But why merely translation is improvement?

- **AHDL is an old version of HDL**
 If you’re going to work with the Engineers of new era, one needs to shift to VHDL because it’s the latest version of hardware description language.

- **VHDL is a higher level language**
 In programming languages the more high level means more close to human understanding; AHDL is less understandable in sense that you need to take care of the hardware aspect while writing the code, while in VHDL the compiler takes care of the hardware; you just need to devise an algorithm.

- **Very few comments in older codes (Also in Italian)**
 Another aspect of improvement is that older codes were not oriented in a way that is easily understandable to a new comer. There were very few comments in Italian that were not very clear regarding the working logic of the code. The comments are now modified with clarity and language is changed to English for better understanding.

- **Code Complexity**
 The AHDL code is itself complex at times due to more number of instructions. This complexity and length of the code is greatly reduced in case of VHDL due to strong instruction set.

- **Synchronization**
 The VHDL code provides the ability to synchronize the circuit enclosing instances in processes managed by a single clock signal.

- **Processing Efficiency**
 Being a newer version of HDL, VHDL files take less compilation and burning time than respective AHDL files reducing the required processing power.

- **Debugging**
 And last but not the least, the debugging of the FPGAs is very easy in case of VHDL as compared to AHDL that makes working and correction of codes comfortable.

4. PROGRAMMING

The real challenge of the project was to translate the AHDL codes with very low information in terms of comments, to VHDL without making any difference in basic routine of the program. Algorithms were varied in order to get more efficient and simple hardware, wherever applicable. For the programming Quartus II v10.1 was used as an environment.
The verification of these codes required simulating both the AHDL and VHDL files for the desired outputs that should necessarily be the same. I was actually able to do some simulations of VHDL files in *Modelsim* but those simulations were not very easy and clear for AHDL files. So it will be better for the guys who wish to carry on this project to use some other simulation environment for the verification and testing purposes.

5. EXAMPLE CODE

- **TTCRX_SOFT_RESET_MODULE.tdf** (AHDL file)

```vhdl
SUBDESIGN TTCRX_SOFT_RESET_MODULE 
  
  -- INPUT
  
  -- TTCRx
  DQ[3..0]: INPUT;
  DOUTSTR: INPUT;
  ADDRESS[3..0]: INPUT;
  
  -- OUTPUT
  TTCRX_SOFT_RESETn: OUTPUT;

BEGIN

CASE (DQ[3..0], DOUTSTR, ADDRESS[3..0]) IS

  WHEN B"0000111001100" =>
    TTCRX_SOFT_RESETn = GND;

  WHEN OTHERS =>
    TTCRX_SOFT_RESETn = VCC;

END CASE;

END;
```

58
5
TTCRX_SOFT_RESET_MODULE.vhd (VHDL file)

-- DECODING THE RESET COMMAND FROM THE TTCRX (CODE "1100", CMD 12)
-- AND CREATES AN IMPULSE TO RESET TO DISTRIBUTE WITHIN THE FIRMWARE

LIBRARY ieee;
USE ieee.numeric_std.all;
USE ieee.std_logic_1164.all;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

-- SUBDESIGN TTCRX_SOFT_RESET_MODULE
ENTITY HMPIDvhdl IS
PORT(
 -- INPUT
 -- TTCRx
 DQ : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 DOUTSTR : IN STD_LOGIC;
 ADDRESS : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 -- OUTPUT
 TTCRX_SOFT_RESETn: OUT STD_LOGIC
);
END HMPIDvhdl;

ARCHITECTURE TTCRX_SOFT_RESET_MODULE OF HMPIDvhdl IS
BEGIN
PROCESS(DOUTSTR ,DQ(3 DOWNTO 0) ,ADDRESS(3 DOWNTO 0)) BEGIN
CASE (DOUTSTR & DQ(3 DOWNTO 0) & ADDRESS(3 DOWNTO 0)) IS

 WHEN "000011100" =>
 TTCRX_SOFT_RESETn <= '0';

 WHEN OTHERS =>
 TTCRX_SOFT_RESETn <= '1';
END CASE;
END PROCESS;
END TTCRX_SOFT_RESET_MODULE;

6. RECOMMENDATIONS

Since most of the Code has been written now the next step is to verify the translation using real time simulation. For that one needs to write the test benches for all separate modules and verify for similar results by both VHDL and AHDL files. Same desired outputs from the VHDL project will be a confirmation that the translation/improvement of readout code was correct and it can be implemented on the hardware now.
ABOUT

USMAN AMIN FIAZ
| House# 2, Street# 8, Block-F, Soan Gardens | Islamabad, Pakistan |
| Mobile: +92-334-9570527 / Residence: +92-51-5738474 |
| u.a.f@ieee.org | uaf111@gmail.com |

Objective: A highly motivated and ambitious Electrical Engineer with excellent academic credentials and comprehensive knowledge of the field, seeking to join an organization that allows me to grow professionally by giving the chance to utilize my technical and management skills for the betterment of the organization, with the best use of my dedication, determination and resourcefulness.

EDUCATION

Bachelor of Science, Electrical Engineering (BSEE) CGPA:3.99
Pakistan Institute of Engineering and Applied Sciences, (PIEAS)
Islamabad, Pakistan. (Expected June 2015)

- Major: Electrical
- Minor: Electronics

Projects:
- Design & Implementation of Regulated DC Power Supply
- Design and Implementation of 8088 microprocessor based Single Board Computer
- Design of a Stair Climbing robot able to ascend stairs at the rate of at least one stair per minute and keep a payload to the ground during the stair climbing action. (CAD Project)
- Design of timing sequential circuit for a 4 way traffic signal
- Design and implementation of an Audio Amplifier.
- Design and Implementation of a line tracking robot (Ongoing project)

SKILLS & ABILITIES

Leadership:
- Chairperson IEEE PIEAS Student Branch. (2013-Present)
- Head Theme Applied Sciences, PIEAS Thematic Society. (2013-Present)

Management:
As the above mentioned post holder, organized;
- IEEE Insight, MATLAB/GRE Workshops
- Cyber Security Awareness/ Microcontroller Workshops
- Couple of technical events; ‘Construct a Thon’ and ‘Pi-Electric’

Memberships:
- Member IEEE and IEEE PIEAS Student Branch. (2013-Present)
- Executive Member Autodesk Education Community (USA). (2011-Present)

EXPERIENCE

Instrumentation Control and Computer Complex, ICCC Islamabad, Pakistan. (June 2013 to August 2013)

- Six-Week Summer Internship at Instrumentation Control and Computer Complex (ICCC), PAEC. The internship included the hands on experience in six different fields; Robotics, Software/Cryptography, Microcontrollers, Networking, Telecommunication & Embedded systems - FPGA’s.

RESEARCH

Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad, Pakistan. (February 2014 to Present)

- Currently working on the Adaptive state observer for Lipschitz nonlinear systems. (A research based project) – with Dr. Muhammad Rehan (PIEAS)