ATLAS Measurements of Boosted Objects

Christoph Anders
on behalf of the
ATLAS collaboration

Physikalisches Institut – Universität Heidelberg

August 19th 2014
Understanding behavior of “basic” boosted objects, W/Z and top, at high p_T is essential for many measurements and searches!

New or updated ATLAS cross section results since BOOST ’13:

- Differential $t\bar{t}$ cross section (July ’14)
- High p_T $Z \rightarrow b\bar{b}$ cross section (April ’14)
- High p_T W/Z cross section (July ’14)
- Data: $\sqrt{s} = 7$ TeV, $L_{int} = 4.6$ fb$^{-1}$
- Event selection:
 - Single lepton trigger
 - 1 e or μ, $p_T > 25$ GeV, $|\eta| < 2.5$
 - ≥ 4 anti-k_t, $R = 0.4$ jets, $p_T > 25$ GeV, $|\eta| < 2.5$
 - ≥ 1 b-tag, MVA tagger, $\epsilon = 70\%$
 - $E_T^{miss} > 30$ GeV and $m_W^T > 35$ GeV
- Reconstruct $t\bar{t}$ kinematics with Likelihood fitter
- Signal MC: ALPGEN+HERWIG, CTEQ6L1
- W+jets normalization and multi-jet backgrounds derived from data
- W+jets shape and other bkgs from MC
Unfold data to parton-level kinematics

Regularized $S_{\text{ingular}}V_{\text{alue}}D_{\text{ecomposition}}$ method

Migration matrices from $t\bar{t}$ MC (LO)

Main systematic uncertainties:
- $p_T^t, m_{t\bar{t}}$: JES (1-4%), MC gen. (1-8%), b-tagging eff. (1-4%)
- $p_T^{t\bar{t}}$: ISR/FSR (1-10%), MC gen. (1-9%), frag. (1-7%), JER (3-8%)
- $y_{t\bar{t}}$: MC gen. (1-6%), fragmentation (1-4%)

Combine e and μ channels with BLUE method

Compute $\frac{1}{\sigma} \frac{d\sigma}{dX}$, with X:
- p_T^t (sensitive to higher order corrections @ high p_T)
- $m_{t\bar{t}}$ (important for $t\bar{t}$ resonance searches)
- $p_T^{t\bar{t}}$ (sensitive to extra radiation)
- $y_{t\bar{t}}$ (test of PDFs)

Compare to various generators and calculations
\(\frac{1}{\sigma} \frac{d\sigma}{dp_T} \): p_T softer in data above 200 GeV.

No single generator performs best for all kinematic variables considered.

\(\frac{1}{\sigma} \frac{d\sigma}{dm_{tt}} \): χ^2 tests show that the data have sufficient precision to probe the predictions!
Comparison of Unfolded Data and NLO QCD Calculations

In data p_T and m_{tt} softer in tails

Details:
- QCD calculations at NLO (MCFM with CT10 PDF)
- $\mu_F = \mu_R = m_{top}$, varied by $\frac{1}{2}$ and 2
- CT10 PDF 68% CL error-sets
Comparison of Unfolded Data and NLO+NNLL QCD Calculations

In data p_T^t and $m_{t\bar{t}}$ softer in tails

Details:
- QCD calculations at NLO+NNLL (MSTW2008NNLO)
- Dynamic scale $m_{t\bar{t}}$, varied by $\frac{1}{2}$ and 2
- PDF uncertainties for $m_{t\bar{t}}$ and $p_T^{t\bar{t}}$
- For p_T^t dynamic scale uncertainty $\mu = \sqrt{m_t^2 + P_T^{t\bar{t}}}$ included
Comparison of Unfolded Data and different PDFs

- MCFM predictions with 4 PDF sets
- Some tension at high p_T and $m_{t\bar{t}}$
- Data might be usable to improve future PDF fits
Data: \(\sqrt{s} = 8 \text{ TeV}, \ L_{\text{int}} = 19.5 \ \text{fb}^{-1} \)

Signal simulation: SHERPA

Multi-jet background: from data

Other small backgrounds from simulation.

OR of six jet based triggers.

\[3 \leq n_{\text{jet}} \leq 5: \]
\[\text{anti-}k_t \ R = 0.4, \ p_T > 30 \ \text{GeV}, \ |\eta| < 2.5 \]

\[n_{b-\text{jet}} = 2: \]
\[\text{MVA, } \epsilon = 70\%, \ p_T > 40 \ \text{GeV}, \ \Delta R_{bb} < 1.2 \]

Di-jet system:
\[p_T^{\text{dijet}} = p_T^{bb} > 200 \ \text{GeV} \]
\[60 < m_{d\text{jet}} < 160 \ \text{GeV} \]
- Z+jet system tends to be more boosted along beam axis than multi-jet background.
- Use η_{dijet} and $\Delta \eta$ (dijet, balance jet) in NN.
- Use NN output S_{NN} to split sample in signal and control region:
 - $N_{data}^{SR} \approx 236k$, $N_{data}^{CR} \approx 475k$
 - $(S/B)^{SR} = 6\%$, $(S/B)^{CR} = 2\%$
 for m_{dijet} in $[m_{W} - 15\text{GeV}, m_{W} + 15\text{GeV}]$
Signal Extraction

Signal Region:

- **Fit:** $m_{\text{dijet}}(60 \text{ GeV}, 160 \text{ GeV})$
- Simultaneous fit in SR and CR (binned (1 GeV), extended maximum-likelihood).
- Signal model: 3 Gaussians, yield in SR, peak position are free, other parameters fixed to MC.
- $R_Z = \frac{N_{Z\rightarrow b\bar{b}}^{CR}}{N_{Z\rightarrow b\bar{b}}^{SR}} = 0.62$ fixed.
- Multi-jet background: 7th order Bernstein polynomial
- Other smaller backgrounds from MC.
- Yield: $N_{Z\rightarrow b\bar{b}} = 6420 \pm 640 \text{ (stat.)}$

Control Region:
Fit: \(m_{dijet}(60 \text{ GeV}, 160 \text{ GeV}) \)

Simultaneous fit in SR and CR (binned (1 GeV), extended maximum-likelihood).

Signal model: 3 Gaussians, yield in SR, peak position are free, other parameters fixed to MC.

\[R_Z = \frac{N^{CR}_{Z \rightarrow b\bar{b}}}{N^{SR}_{Z \rightarrow b\bar{b}}} = 0.62 \text{ fixed.} \]

Multi-jet background:

7th order Bernstein polynomial

Other smaller backgrounds from MC.

Yield: \(N_{Z \rightarrow b\bar{b}} = 6420 \pm 640 \text{ (stat.)} \)
Resulting Cross Section $\sigma_{Z \rightarrow b\bar{b}}$

Measurement:

$\sigma_{Z \rightarrow b\bar{b}}^{(fiducial)} = 2.02 \pm 0.20 \text{ (stat.)} \pm 0.25 \text{ (syst.)} \pm 0.06 \text{ (lumi.) \; pb}$

NLO Predictions:

$\sigma_{POWHEG} = 2.02^{+0.25}_{-0.19} \text{ (scales)}^{+0.03}_{-0.04} \text{ (PDF) \; pb}$

$\sigma_{aMC@NLO} = 1.98^{+0.16}_{-0.08} \text{ (scales)} \pm 0.03 \text{ (PDF) \; pb}$

Very good agreement!

Systematics:

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$\Delta\sigma_{Z \rightarrow b\bar{b}}^{\text{fid}}(%)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>$+6.5/ -5.0$</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>± 5.1</td>
</tr>
<tr>
<td>b-tagging</td>
<td>± 3.6</td>
</tr>
<tr>
<td>Trigger modelling</td>
<td>± 6</td>
</tr>
<tr>
<td>Control Region bias</td>
<td>$+4.9/ -5.5$</td>
</tr>
<tr>
<td>Signal S_{NN} modelling</td>
<td>± 2.9</td>
</tr>
<tr>
<td>Signal m_{dijet} shape</td>
<td>± 2.2</td>
</tr>
<tr>
<td>$Z \rightarrow c\bar{c}$ normalisation</td>
<td>± 0.4</td>
</tr>
<tr>
<td>$t\bar{t}$ normalisation</td>
<td>± 1.1</td>
</tr>
<tr>
<td>$W \rightarrow q\bar{q}'$ normalisation</td>
<td>± 1.0</td>
</tr>
</tbody>
</table>
High p_T all-hadronic W/Z cross section measurement

Data: $\sqrt{s} = 7$ TeV, $L_{int} = 4.6$ fb$^{-1}$

Signal MC: HERWIG+JIMMY scaled to NLO MCFM prediction ($k = 1.25$).

QCD jet MC: PYTHIA + variations for crosschecks/systematics.

Reconstruct W/Z in one anti-k_t $R = 0.6$ jet, with $p_T > 320$ GeV, $|\eta| < 1.9$, 50 GeV < m_{jet} < 140 GeV

Limited jet mass resolution \rightarrow measure

$\sigma_{W+Z} = \sigma_W (p_T > 320, |\eta| < 1.9) \times B (W \rightarrow q\bar{q})$

$+ \sigma_Z (p_T > 320, |\eta| < 1.9) \times B (Z \rightarrow q\bar{q})$

Use W/Z enriched jet sample to study several grooming methods.
Boost jet to its center-of-mass frame:
- \(W/Z \): back-to-back
- QCD: isotropic

Analyse “jet-shapes”:

Jet center-of-mass frame:

- **Thrust Minor**
 - \(W/Z \): back-to-back
 - QCD: isotropic

- **Sphericity**
 - \(W/Z \): back-to-back
 - QCD: isotropic

- **Aplanarity**
 - \(W/Z \): back-to-back
 - QCD: isotropic

ATLAS
\[\sqrt{s} = 7 \text{ TeV}, \ 4.6 \text{ fb}^{-1} \]
\(p_T > 320 \text{ GeV} \)
\(|\eta| < 1.9 \)

- QCD jets
- W/Z jets
- Data 2011
Likelihood Discriminant

\[\text{Maximise} \quad \frac{S}{\sqrt{S + B}} \rightarrow L > 0.15 \]

\[|\eta| < 1.9 \]

Final sample: \(\approx 591\text{k jets} \)

\(n_{\text{jet}} > 1 \) for 2.5\% of selected data events

\(\sqrt{s} = 7 \text{ TeV, } 4.6 \text{ fb}^{-1} \)

\(p_T > 320 \text{ GeV} \)
Signal and Background Modeling

Signal:

- **ATLAS Simulation**
 - $\sqrt{s} = 7$ TeV
 - $p_T > 320$ GeV
 - $|\eta| < 1.9$
 - $L > 0.15$

- For each W and Z:
 - 1 Breit-Wigner \otimes 1 Gauss
 - Floating: W/Z rate
 - Other parameters: fixed to MC

![Signal Plot](a)

Background:

- **ATLAS Simulation**
 - $\sqrt{s} = 7$ TeV
 - $p_T > 320$ GeV
 - $|\eta| < 1.9$ $L > 0.15$

- 2 exp. decay functions $+ 1$ sigmoid
 - $S(\bar{m}) = \bar{m}/\sqrt{1 + \bar{m}^2}$ with $\bar{m} = (m_{\text{jet}} - m_0) / \sigma_m$

- Shoulder due to selection, etc., well reproduced by QCD jet MC

![Background Plot](b)
Signal Extraction and Results

Systematics:

<table>
<thead>
<tr>
<th>Sources</th>
<th>σ_{W+Z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC modelling</td>
<td>4.4%</td>
</tr>
<tr>
<td>Background pdf</td>
<td>8.8%</td>
</tr>
<tr>
<td>Signal pdf</td>
<td>5%</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>3.7%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>< 1%</td>
</tr>
<tr>
<td>Jet mass scale</td>
<td>2.2%</td>
</tr>
<tr>
<td>Jet mass resolution</td>
<td>12.6%</td>
</tr>
<tr>
<td>$t\bar{t}$ contribution</td>
<td>2.8%</td>
</tr>
<tr>
<td>Single-top and diboson</td>
<td>< 1%</td>
</tr>
<tr>
<td>W and Z relative yield</td>
<td>2.9%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.8%</td>
</tr>
<tr>
<td>Total</td>
<td>18%</td>
</tr>
</tbody>
</table>

Result:

$$\sigma_{W+Z} \left(W/Z \rightarrow q\bar{q}, p_T > 320, |\eta| < 1.9\right) = 8.5 \pm 0.8 \text{ (stat.)} \pm 1.5 \text{ (syst.) \ pb}$$

Consistent with NLO MCFM prediction within 2σ:

$$\sigma_{W+Z}^{MCFM} = 5.1 \pm 0.5 \text{ pb}$$
Use selected sample enriched in W/Z to study effect of

1. **Pruning** ($R_{\text{cut}} = 0.3$, $z_{\text{cut}} = 0.02$, k_t)
2. **Trimming** ($R_{\text{sub}} = 0.2$, $f_{\text{cut}} = 0.03$)
3. **Area subtraction**

1 & 2: cut on recalculated LLH to get the same background rejection (89%).
3: Recalculate area subtracted m_{jet} for default jets.

Without extra optimization, results are compatible with default analysis within statistical uncertainties.
Low vs. High Pileup, i.e. $N_{Vtx} < 5$ vs. $N_{Vtx} > 10$

Pile-up is nicely suppressed, effect are well described by MC.
Conclusions

- New differential $t\bar{t}$ cross section measurement @7 TeV
 - Comparison with MC generators, NLO(+NNLL) QCD computations and PDF sets
 - Data softer at high p_T than prediction, current reach: 900 GeV

- High p_T all-hadronic W/Z and $Z \rightarrow b\bar{b}$ cross section measurements in good agreement with predictions

- Test of substructure techniques in events enriched with hadronically decaying W/Z shows good agreement with prediction and nice pile-up suppression.

- Looking forward to even more boosted Run-I/II measurements @ BOOST2015!
Backup

Backup

Backup

Backup

Backup
$\bar{t}t$ Differential Cross Section – χ^2 values

| Variable $| p_T^t$ | $m_{t\bar{t}}$ | p^t_T | $|y_{t\bar{t}}|$ |
|-----------|----------|-----------|---------|---------------|
| ALPGEN+HERWIG χ^2/NDF | 24.6/6 | 2.6/4 | 4.2/3 | 1.6/2 |
| MC@NLO+HERWIG χ^2/NDF | 8.0/6 | 6.9/4 | 0.5/3 | 3.4/2 |
| POWHEG+HERWIG χ^2/NDF | 4.8/6 | 5.5/4 | 4.1/3 | 4.3/2 |
| POWHEG+PYTHIA χ^2/NDF | 19.6/6 | 13.4/4 | 21.3/3 | 4.8/2 |
| NLO QCD χ^2/NDF | 9.5/6 | 5.5/4 | 14.3/3 | 3.7/2 |
| NLO+NNLL χ^2/NDF | 7.6/6 | 5.9/4 | 9.9/3 | 0.16 |

Table VII. Comparison between the measured normalized differential cross-sections and the predictions from several MC generators and theoretical calculations. For each variable and prediction a χ^2 and a p-value are calculated using the covariance matrix of each measured spectrum. The number of degrees of freedom (NDF) is equal to $N_b - 1$ where N_b is the number of bins in the distribution. In the last column p_T^t, $m_{t\bar{t}}$ and p^t_T are compared to NLO+NNLL predictions [11] and [12-14].

| Variable $| p_T^t$ | $m_{t\bar{t}}$ | p^t_T | $|y_{t\bar{t}}|$ |
|-----------|----------|-----------|---------|---------------|
| CT10 χ^2/NDF | 9.5/6 | 5.5/4 | 14.3/3 | 3.7/2 |
| MSTW2008NLO χ^2/NDF | 9.8/6 | 6.0/4 | 13.3/3 | 4.0/2 |
| NNPDF 2.3 χ^2/NDF | 8.2/6 | 13.3/3 | 1.3/2 | 0.16 |
| HERAPDF 1.5 χ^2/NDF | 5.5/6 | 5.2/4 | 1.3/2 | 0.16 |

Table VIII. Comparison between the measured normalized differential cross-sections and the NLO predictions (MCFM) for different parton distribution functions. For each kinematic variable and each parton distribution function, a χ^2 and a p-value are calculated using the covariance matrix of each measured spectrum as well as the theory PDF and scale covariance matrix. The number of degrees of freedom (NDF) is equal to $N_b - 1$ where N_b is the number of bins in the distribution.
Differential Cross Section – Systematic Uncertainties, Event Yields

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>±2.5</td>
<td>±1.2</td>
</tr>
<tr>
<td>Jet resolution</td>
<td>±0.5</td>
</tr>
<tr>
<td>b-quark tagging efficiency</td>
<td>±0.3</td>
</tr>
<tr>
<td>c-quark tagging efficiency</td>
<td>±0.1</td>
</tr>
<tr>
<td>Light-Jet tagging efficiency</td>
<td>±0.2</td>
</tr>
<tr>
<td>Lepton selection and momentum scale</td>
<td>±0.2</td>
</tr>
<tr>
<td>$\frac{d\sigma}{dt}$</td>
<td>±0.1</td>
</tr>
<tr>
<td>$\frac{d\sigma}{d\mu}$</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δb</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δc</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δt</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δy</td>
<td>±0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Jet resolution</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>b-quark tagging efficiency</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>c-quark tagging efficiency</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Light-Jet tagging efficiency</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Lepton selection and momentum scale</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>$\frac{d\sigma}{dt}$</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>$\frac{d\sigma}{d\mu}$</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δb</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δc</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δt</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
<tr>
<td>Δy</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
<td>±0.1</td>
</tr>
</tbody>
</table>

TABLE II. Event yields in the e-jets and μ-jets channels. The signal model, denoted $t\bar{t}$ ($l+\text{jets}$), is generated using ALPGEN. Errors indicate the total statistical and systematic uncertainties on each subsample and the uncertainty on the signal includes the generator systematic uncertainty discussed in Sec. 11B.
t\bar{t} Differential Cross Section – Migration Matrices II

ATLAS Simulation

\(\sqrt{s}=7 \text{ TeV} \)

e+jets

Reconstructed \(p_T^f\) [GeV]

<table>
<thead>
<tr>
<th>Range</th>
<th>0.0%</th>
<th>0.1%</th>
<th>3.0%</th>
<th>72.7%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7%</td>
<td>4.3%</td>
<td>58.4%</td>
<td>21.0%</td>
</tr>
<tr>
<td>40</td>
<td>30.7%</td>
<td>71.3%</td>
<td>35.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>170</td>
<td>68.6%</td>
<td>24.4%</td>
<td>3.6%</td>
<td>0.3%</td>
</tr>
<tr>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation: 0.84

Reconstructed \(|y|\)

<table>
<thead>
<tr>
<th>Range</th>
<th>0.7%</th>
<th>10.4%</th>
<th>75.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>14.1%</td>
<td>68.4%</td>
<td>21.5%</td>
</tr>
<tr>
<td>0.5</td>
<td>85.3%</td>
<td>21.2%</td>
<td>3.0%</td>
</tr>
</tbody>
</table>

Correlation: 0.80

\(\sqrt{s}=7 \text{ TeV} \)

µ+jets

Reconstructed \(p_T^f\) [GeV]

<table>
<thead>
<tr>
<th>Range</th>
<th>0.0%</th>
<th>0.1%</th>
<th>3.1%</th>
<th>72.3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.7%</td>
<td>4.0%</td>
<td>57.4%</td>
<td>22.9%</td>
</tr>
<tr>
<td>40</td>
<td>30.6%</td>
<td>71.2%</td>
<td>35.9%</td>
<td>4.7%</td>
</tr>
<tr>
<td>170</td>
<td>68.7%</td>
<td>24.7%</td>
<td>3.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>340</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Correlation: 0.84

Reconstructed \(|y|\)

<table>
<thead>
<tr>
<th>Range</th>
<th>0.9%</th>
<th>11.6%</th>
<th>78.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>14.9%</td>
<td>68.8%</td>
<td>19.3%</td>
</tr>
<tr>
<td>0.5</td>
<td>84.3%</td>
<td>19.6%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

Correlation: 0.80
5. Cross-section definition

The fiducial cross section of resonant Z boson production, with Z decaying to $b\bar{b}$, $\sigma^{\text{fid}}_{Z\to b\bar{b}}$, is defined as follows. Particle-level jets in MC $Z\to b\bar{b}$ events are reconstructed from stable particles (particles with lifetime in excess of 10 ps, excluding muons and neutrinos) using the anti-k_T algorithm with radius parameter $R=0.4$. There must be two particle-level b-jets in the event that satisfy the following fiducial conditions: $p_T > 40 \text{ GeV}$, $|\eta| < 2.5$ for the individual jets; and $\Delta R(\text{jet1, jet2}) < 1.2$, $p_T^{\text{dijet}} > 200 \text{ GeV}$, $60 < m_{\text{dijet}} < 160 \text{ GeV}$ for the dijet system.

The cross section is extracted from the measured yield of $Z\to b\bar{b}$ events in the data, $N_{Z\to b\bar{b}}$, as

$$\sigma^{\text{fid}}_{Z\to b\bar{b}} = \frac{N_{Z\to b\bar{b}}}{\mathcal{L} \cdot C_{Z\to b\bar{b}}} ,$$

where $C_{Z\to b\bar{b}}$ is the efficiency correction factor to correct the detector-level $Z\to b\bar{b}$ yield to the particle level. The value of $C_{Z\to b\bar{b}}$ in the SHERPA MC signal is found to be 16.2%, which can be factorised into the product of: trigger efficiency (88.1%), b-tagging and kinematic selection efficiency (52.7%), and the efficiency of the S_{NN} requirement that defines the Signal Region (35.0%).

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$\Delta N_{Z\to b\bar{b}}$ (%)</th>
<th>$\Delta C_{Z\to b\bar{b}}$ (%)</th>
<th>$\Delta \sigma^{\text{fid}}_{Z\to b\bar{b}}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>+3.0/ − 1.5</td>
<td>±8.4</td>
<td>+6.5/ − 5.0</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>±5.3</td>
<td>±0.2</td>
<td>±5.1</td>
</tr>
<tr>
<td>b-tagging</td>
<td>±0.1</td>
<td>±3.6</td>
<td>±3.6</td>
</tr>
<tr>
<td>Trigger modelling</td>
<td>N/A</td>
<td>±6</td>
<td>±6</td>
</tr>
<tr>
<td>Control Region bias</td>
<td>+4.9/ − 5.5</td>
<td>N/A</td>
<td>+4.9/ − 5.5</td>
</tr>
<tr>
<td>Signal S_{NN} modelling</td>
<td>±0.9</td>
<td>±2.0</td>
<td>±2.9</td>
</tr>
<tr>
<td>Signal m_{dijet} shape</td>
<td>±2.2</td>
<td>N/A</td>
<td>±2.2</td>
</tr>
<tr>
<td>$Z\to cc$ normalisation</td>
<td>±0.4</td>
<td>N/A</td>
<td>±0.4</td>
</tr>
<tr>
<td>$t\bar{t}$ normalisation</td>
<td>±1.2</td>
<td>N/A</td>
<td>±1.1</td>
</tr>
<tr>
<td>$W\to q\bar{q}'$ normalisation</td>
<td>±1.0</td>
<td>N/A</td>
<td>±1.0</td>
</tr>
</tbody>
</table>
This yield measurement, extrapolated back to the baseline fiducial cross-section definition (i.e. with dijet $p_T > 200$ GeV), results in a consistent cross section of 2.11 ± 0.28 (stat.) pb.
Fit Validation, only events selected by the dominant trigger

ATLAS
\(\sqrt{s} = 8 \text{ TeV} \)
\(\int L dt = 19.5 \text{ fb}^{-1} \)

Signal Region
Dominant trigger
Data
- Signal + Background
- \(Z \rightarrow b\bar{b} \) Signal
- Background

Control Region
Dominant trigger
Data
- Signal + Background
- \(Z \rightarrow b\bar{b} \) Signal

Statistically independent compared to next page, compatible results: 1.99 +/- 0.25 (stat.) pb and 1.87 +/- 0.44 (stat.) pb respectively, despite the very different background shapes that are produced by the different kinematic sculpting effects of the triggers and the conservative trigger modelling systematic uncertainty of the measurement.
Statistically independent compared to last page, compatible results: 1.87 ± 0.44 (stat.) pb and 1.99 ± 0.25 (stat.) pb respectively, despite the very different background shapes that are produced by the different kinematic sculpting effects of the triggers and the conservative trigger modelling systematic uncertainty of the measurement.
• Thrust minor: the thrust axis [34, 35] of a jet in its centre-of-mass frame, \hat{T}, is defined as the direction which maximizes the sum of the longitudinal momenta of the energy clusters. The thrust minor [34, 35], T_{min}, is related to this direction and is defined as

$$T_{\text{min}} = \frac{\sum_i |\vec{p}_i \times \vec{T}|}{\sum_i |\vec{p}_i|},$$

(A.1)

where \vec{p}_i are the momenta of the energy clusters in the jet rest frame. $T_{\text{min}} = 0$ corresponds to a highly directional distribution of the energy clusters, and $T_{\text{min}} = 0.5$ corresponds to an isotropic distribution.

• Sphericity: the sphericity tensor [36] is defined as

$$S^\alpha{}^\beta = \frac{\sum_i P_i^\alpha P_i^\beta}{\sum_i |\vec{p}_i|^2},$$

(A.2)

where α and β correspond to the x, y and z components of the momenta of the energy clusters in the jet rest frame. By standard diagonalization of $S^{\alpha\beta}$ one may find three eigenvalues $\lambda_1 \geq \lambda_2 \geq \lambda_3$, with $\lambda_1 + \lambda_2 + \lambda_3 = 1$. The sphericity is then defined as

$$S = \frac{3}{2} (\lambda_2 + \lambda_3).$$

(A.3)

Sphericity is a measure of the summed squares of transverse momenta of all the energy clusters with respect to the jet axis. By construction $0 \leq S \leq 1$. A jet with two back-to-back subjets in its rest frame has $S = 0$, and $S = 1$ indicates an isotropic distribution of the energy clusters.

• Aplanarity: the aplanarity [36] is defined as

$$A = \frac{3\lambda_3}{2},$$

(A.4)

and is constrained to the range $0 \leq A \leq \frac{1}{2}$. A highly directional distribution of the energy clusters has $A = 0$, and $A = 0.5$ corresponds to an isotropic distribution.
