Operational Experience with the ATLAS Pixel Detector

Laura Jeanty, Lawrence Berkeley National Lab for the ATLAS Collaboration

10th International Conference on Radiation Effects on Semiconductor Materials, Detectors, and Devices

10 October 2014
The Pixel Detector in ATLAS
The Pixel Detector in ATLAS

1744 modules arranged into 3 barrel and 3 endcap layers

46080 Pixels per module → 80 million readout channels

1.4 m
The Pixel Detector in ATLAS

Sensor
- 250 μm thick n-in-n Si planar sensor
- 50 x 400 typical μm pixel size
- Bias voltage: 150 - 600 V
- Resolution: 10 μm in Rφ and 80 μm in z
- Radiation tolerance: 500 kGy 10^{15} 1 MeV neutron equiv. cm$^{-2}$

Readout
- 16 Front ends chips bump-bonded to sensor
- Module Control Chip (MCC) builds event
- Data transfer 40 – 160 MHz, layer dependent
2007 May: Installation in ATLAS
2008 Sept: First cosmic data
2009 Nov: First 450 GeV beam
2010 March: First 7 TeV collisions
2011 May: Luminosity reaches 10^{33} cm$^{-2}$ s$^{-1}$
2012 March: First 8 TeV collisions
2013 Feb: End of Run I, 27 fb$^{-1}$ total data recorded
2013 April: Pixel detector on surface
2013 Dec: Pixel detector re-installed into ATLAS
2014 May: Insertable B-Layer inserted in cavern
2015 May: First 13/14 TeV collisions
Data Taking Overview during Run I

High operational efficiency and performance achieved with regular calibrations

Slight increase in disabled modules over time

Luminosity-dependent de-synchronization of front ends

Rate limitations

Radiation damage as expected

Addressed during Long Shutdown
Data taking efficiency in Run I

Detector ready for data taking: 99.9%

Operational fraction of Pixel detector: 95%
98% at beginning of Run I

Noise occupancy: 10^{-9} per pixel
0.1% of noisy pixels masked online (occupancy > 10^{-6})

Hit efficiency for association to track: 97 – 99%
Disabled modules excluded, inefficiency mostly due to disconnected bumps and disabled front-ends

Noise occupancy, per layer

Efficiency of associating hit to track, per layer
Detector Calibration

- Detector regularly re-tuned
- Threshold
 - Measure the discriminator activation curve as function of injected charge
 - Tuned to 3500 e-
 - Dispersion of 40 e-
 - Noise around threshold 200 e-
Detector Calibration

Time over threshold (ToT) regularly measured and tuned

ToT tuned to 30 bunch crossings (25 ns) for injected charged of 20k e-

ToT linear with injected charge for most of range

ToT used for de/dx measurement, particle ID

Improved position resolution with weighted clustering and neural networks
Data taking issues in Run I: Module De-synchronization

Module timeouts and de-synchronizations
 Increased as luminosity increased
 caused by single event upsets

Real-time recovery actions implemented
 Automatic reconfiguration of module implemented on SBC first then ROD
 reduced dead-time from seconds to ms

ATLAS Pixel Preliminary

Modules affected by desynchronisation (ROD level)

- Number of bad modules (bad+active) per event per LB, barrel layer 2

 - Run 208811
 - Fill 2984
 - Peak Lumi 7.42×10^{33}
 - 19 h stable beams

Modules affected by desynchronisation (Module level)

- # errors/event

 - without auto-recovery
 - with auto-recovery

Data taking issues in Run I: Rate Limitations

Bandwidth between module and ROD depends on Layer

B-layer: 160 Mb/s (2 x 80) on two optical fibers
Layer 1 + disks: 80 Mb/s on one optical fiber
Layer 2: 40 Mb/s on one fiber
Data taking issues in Run I: Rate Limitations

Layer 2 will saturate at and above 2×10^{34}
Layer 1 will follow at 3×10^{34}

Expected Link occupancy at 100 kHz L1 Trigger, 13 TeV, and 25 ns bunch spacing

<table>
<thead>
<tr>
<th>Lumi</th>
<th>B-Layer</th>
<th>Layer 1</th>
<th>Layer 2</th>
<th>Disks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{34}</td>
<td>47%</td>
<td>42%</td>
<td>65%</td>
<td>37%</td>
</tr>
<tr>
<td>3×10^{34}</td>
<td>95%</td>
<td>97%</td>
<td>148%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Data taking issues in Run I: Rate Limitations

Address rate limitation in two ways:

1) New service quarter panels (NSQP) and external optoboards installed on detector during Long Shutdown I to double optical fibers and optical channels

Layer 1: New 160 (2 x 80) Mb/s on two fibers
Layer 2: New 80 Mb/s on one fiber
Data taking issues in Run I: Rate Limitations

Address rate limitation in two ways:

2) Replace existing ROD/BOC system for Layers 2 (early 2015) and 1 (2016) with ROD/BOCs designed for IBL

Boards provided bandwidth support and protection at higher pileup
New Service Quarter Panels

Rebuilt services of detector on surface

Optical electronics moved to off-detector location
 Increased data bandwidth from modules to back-end electronics
 Easier to access for future repairs

8 new service quarter panels installed

electrical → optical conversion
 moved farther from collision point
Repair of Disabled Modules

During Run 1, 2.5% → 5% of modules became disabled (correlated with thermal cycles)

All modules tested and repairs attempted on surface during Long Shutdown I

ATLAS Pixel Preliminary

(B-Layer disabled modules: 18 / 286)
Repair of Disabled Modules

During Run 1, 2.5% → 5% of modules became disabled (correlated with thermal cycles)

More than 60% of disabled modules repaired on surface during Long Shutdown I

Remaining issues mostly problems with HV

Disabled Modules by Failure Type (End of Run 1)

Modules to be disabled (After LS1 Re-installation)

ATLAS Pixel Preliminary
Re-installing the Pixel Detector

Cold tests in June, July, and Sept → 98% of detector working well and ready for IBL! (see Francesco Guescini’s talk next)
Radiation damage monitored in 2 ways:

1) Leakage current measured
 • Customized current measuring boards monitor the current on selected modules
 • HV power supply monitored, per 6-7 modules
 • Short cooling stops allow annealing effect, leakage current reduces
Radiation damage monitored in 2 ways:

1) **Leakage current measured**
 - Customized current measuring boards monitor the current on selected modules
 - HV power supply monitored, per 6-7 modules
 - Short cooling stops allow annealing effect, leakage current reduces

2) **Depletion Voltage**
 - Cross talk scans used before type inversion to measure depletion voltage
 - Type inversion:
 • B-layer: early 2012
 • Layer 1: late 2012
 • Layer 2: not yet
 - Track depth studied after type inversion to measure depletion depth
The ATLAS pixel detector showed excellent performance in the first data taking run

Improvements during the long shut down:

- Repaired modules
- New service quarter panels
- Increased optical links and readout bandwidth
- Insertable B-Layer (next talk)

The detector is back in the cavern, connected and tested with 98% coverage ready for Run 2