Multi-Messenger Analyses with the ANTARES High Energy Neutrino Telescope
Outline

1. Transient Sources Motivation
2. μ-quasar Analysis
3. Blazar Analysis
4. TAToO
5. Conclusions
ANTARES Performance

- 12-line data taking since 2008
- ~7000 detected neutrinos
- Median angular resolution 0.3-0.4° above ~10 TeV
- Effective area ~1m² @30 TeV
- Visibility of 3/4 of the sky, most of the galactic plane
- Real-time data processing
Correlation γ/ν

- Motivation: link CR/ν/γ via Fermi mechanism
- “Leptonic”, “Hadronic” and “Lepto-Hadronic” models
- Open questions over jet composition: relativistic fraction, maximum energies, CRs and UHECRs origin...

SED sample for Blazar 3C279
Sources with Transient Emission

Coincidence of γ and neutrino emission: different transient sources can be analysed

1. μ-quasars: Galactic variable sources (hours \leftrightarrow months)
2. Blazars: Extra-galactic variable sources (hours \leftrightarrow months)
3. GRBs: Most energetic known events in the Universe (sec \leftrightarrow days)

Analysis presented here: μ-quasars and Blazars
Transient Analyses

- ANTARES can perform a wide range of analyses
- Point Source analyses: discovering of astrophysical neutrino sources
- **Multi-messenger study**: Variable light emission sources time info as expected time for neutrino signal
- Improved performance with respect to not using time info at all
Optical Counterparts

Supported by multi-wavelength telescope observations:

- **Satellites**: Rossi RXTE/ASM and Swift BAT/XRT for X-Rays and Fermi-LAT for γ-Rays
- **IACT**: HESS, MAGIC, VERITAS for HE γ-Rays
- **Ground telescopes**: TAROT, ROTSE, ZADKO and IrIS for optical
µ-quasar Analysis
\(\mu\)-quasar Analysis

\(\mu\)-quasars:
- Massive compact objects remains of collapsed stars
- Star companion feed its accretion disk
- Powerful variable X-ray emission

\(\mu\)-quasars with X-ray or \(\gamma\)-ray outbursts in the 2007–2010 satellite data:

- Circinus X-1
- GX339-4
- H 1743-322
- IGRJ17091-3624
- Cygnus X-1
- Cygnus X-3

\(\nu\)-search for 4 black hole binaries split in two cases:
- Hard X-ray states (\(\text{HS} \)): “slow” steady jet
- Transition hard <-> soft (\(\text{TS} \)): “fast” discrete ejection

Relativistic jets \(\rightarrow \) \(\nu\) emission

- Cyg X-3: \(\gamma\)-ray outburst using Fermi/LAT data
- Cir X-1: X-rays + orbital phase/jet connection
μ-quasar Analysis

- ANTARES data period 2007–2010 (813 live time days)
- Multi-messenger info provided by SWIFT, ROSSI and FERMI.

X-ray light curves sample of GX 339-4 between 2007 and 2010 (hard state (HS) and hard–soft transition (TS) filled areas), from top to bottom: SWIFT and Rossi X-ray LCs and hardness ratio.
Multi-Messenger Analyses in ANTARES

Outline
- Transient Sources
- µ-quasars
- Blazars
- TAToO
- Conclusions

µ-quasar Results

- No neutrino found in time coincidence with µ-quasar emissions
- Upper limits on neutrino flux (F.C. @90% C.L.)
- Interpretation of the results regarding models:
 - Distefano et al. (2002)
 - GX 339-4: Zhang et al. (2010) ruled out for $\eta_p/\eta_e > 100$
 - Cyg X-3: Baerwald & Guetta (2010) and Sahakyan et al. (2014) not ruled out

<table>
<thead>
<tr>
<th>Source</th>
<th>TS</th>
<th>Livetime (days)</th>
<th>Fluence U.L. (GeV cm$^{-2}$) [90% C.L.]</th>
<th>η_p/η_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cir X-1</td>
<td>0</td>
<td>100.5</td>
<td>16.8</td>
<td>9.1</td>
</tr>
<tr>
<td>GX 339-4 (HS)</td>
<td>0</td>
<td>147.0</td>
<td>10.9</td>
<td>9.3</td>
</tr>
<tr>
<td>GX 339-4 (TS)</td>
<td>0</td>
<td>4.9</td>
<td>19.4</td>
<td>16.6</td>
</tr>
<tr>
<td>H1743-322 (HS)</td>
<td>0</td>
<td>84.6</td>
<td>9.1</td>
<td>7.1</td>
</tr>
<tr>
<td>H1743-322 (TS)</td>
<td>0</td>
<td>3.3</td>
<td>10.2</td>
<td>7.7</td>
</tr>
<tr>
<td>IGRJ17091-3624</td>
<td>0</td>
<td>8.5</td>
<td>21.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Cyg X-1 (HS)</td>
<td>0</td>
<td>182.8</td>
<td>9.4</td>
<td>29.3</td>
</tr>
<tr>
<td>Cyg X-1 (TS)</td>
<td>0</td>
<td>18.5</td>
<td>6.0</td>
<td>6.7</td>
</tr>
<tr>
<td>Cyg X-3</td>
<td>0</td>
<td>16.6</td>
<td>5.7</td>
<td>7.0</td>
</tr>
</tbody>
</table>

- (1) Distefano et al. (2002) for $\phi \propto E^{-2}e^{-\sqrt{E}/100T_{10}}$
- (2) Regarding jet inclination and Lorentz factor
- (3) No measurements available to estimate the neutrino flux
Upper limits (F.C.@90%) on a neutrino flux $\phi \propto E^{-2} e^{-\sqrt{E/100\text{TeV}}}$ (circles) compared with the expectations of Distefano et al. (2002) in the $\eta_p = \eta_e$ case (triangles). For IGRJ17091-3624 no measurement has been found to estimate the neutrino flux.

Upper limits (F.C.@90%) on the neutrino flux (with and without cutoff at 100 TeV) for GX 339-4 compared with the predicted by Zhang et al. (2010)
Blazar Analysis
Blazars Analyses

Blazars:
- The most variable AGNs
- Accretion disk and jet emission
- Bright γ-ray sources

γ-ray sky as seen by FERMI satellite with the first 2 years of data.

- Flares in two energy ranges: γ-rays (FERMI) and HE-VHE γ-rays (IACT)
Blazars Analyses: FERMI

- Catalogue base: 2FGL(+Fermiblog+TANAMI) → 1873(+43+13) sources
- Preselection: (cuts on catalogue parameters)
 - Blazars \(| \text{DS} > 25\sigma \) \(| \text{VI} > 41.64 \) \(| \delta > 35^\circ \)
 - \(\phi_{\text{min}}^{1-100\text{ GeV}} > 10^{-9} \text{ photons} \cdot \text{cm}^{-2} \cdot \text{s}^{-1} \)
- Reduced to 97(+43+13) pre-selected sources.
- Significant flares found on 41 flaring sources: 3C 454.3, 3C 279, 4C +21.35, PKS 1510–08, ...

Skymap in galactic coordinates with the ANTARES visibility (blue) marking in circles of 2° the 41 FERMI sources.
Blazars Analyses: FERMI

LCs extracted from FERMI photon counting data: Maximum Likelihood Block denoising treatment with a fluence threshold

LEFT: 3C 273 CMAP from FERMI data. RIGHT: Corresponding LC with a MLB characterization. The selected flaring periods are done by a fluence threshold.
Blazars Analyses: **IACT**

7 flaring sources selected from publications on HESS, MAGIC and VERITAS: 4C +21.35, PG 1553+113, PKS 1424+240, 1ES 1218+30.4, 1ES 0229+200, HESS J1943+213 and PKS 0447–439

Skymap in galactic coordinates with the ANTARES visibility (blue) marking in circles of 2° the **7 IACT sources**.
Blazars Analyses: IACT

LCs extracted from publications: Flat emission assumed during the reported flaring periods

LEFT: 1ES 1218+30.4 photon flux above 200 GeV (5 flaring days) as reported by VERITAS collaboration et al. (2010) as shown in Weidinger and Spanier (2010) [arXiv:1005.3747].

RIGHT: 4C +21.35 photon flux above 100 GeV (1 flaring day) as reported by MAGIC collaboration et al. (2011) [arXiv:1101.4645]
Blazars Analyses

- Analysis with 2008–2012 data: from September 6th to December 31st, 2012 (1044 days of live time)
- Unbinned time-dependent search method with a likelihood ratio
- Implementation of a possible lag (±5 days) in ν/γ signal in the likelihood for avoid missing short flares
- Inclusion of a new energy estimator with a more physical justification, declination dependence considered
- Various energy spectra taken in consideration: E^{-2}, E^{-2} with cutoffs @ 1 TeV and 10 TeV, E^{-1}
- Re-optimization of preliminary general cuts: $\cos(\theta) > -0.15 \&\& \beta < 1^\circ$ [Discovery Flux @ 3σ]
- Individual Λ quality cut optimization [Model Discovery Potential @ 3σ]

PSF sample for 3C 279 (right) built from the MC distribution of the angular differences (left)
Blazars Results

- Only 3 sources show a neutrino event in time and space coincidence with the flare: 3C 279, PKS 1124–186 and PKS 0235–618
- Most significant source: 3C 279 for E^{-2} with p-value 1.9% (54% post-trial)
- Background fluctuation compatible
- Paper in preparation

LEFT: Neutrino events around 3C 279. The circles are the estimated angular error from the reconstruction.
RIGHT: γ-Ray light curve for 3C 279 with the selected neutrino events within 3$^\circ$ around the source.
[events during and out of the flare]
TAToO
- Optical follow-up of individual ν direction in real-time
- Model independant: No hypothesis on the nature of the source

TAToO

- 3 types of triggers:
 - Doublet: Two neutrinos in a 3° angle and in a time window of 15min (0.04/yr)
 - High Energy: A neutrino with $E > 5$ TeV (12/yr)
 - Directional: A neutrino in the direction ($< 0.4^\circ$) of a local galaxy (< 20 Mpc) (12/yr)

- Online processing:
 - Online reconstruction + trigger: \sim3-5s
 - Alert sending: \sim1-10s depending on the telescope response
 - Telescope slewing: \sim1-5s
 Minimum delay between the neutrino and the first image: \sim20s

- Optical follow up:
TAToO Telescope Web

Image by Craig Blayney and Robert Simmon, NASA GSFC, based on DMSP data
Multi-Messenger Analyses in ANTARES

Outline
- Transient Sources
- μ-quasars
- Blazars
- TAToO
- Conclusions

TAToO Telescope Web

TAROT Calern
- Two 25 cm telescopes
- Fov 1.86° x 1.86°
- Slewing time ~ 10s

SWIFT
- X-ray follow-up
- Fov 23.6 x 23.6 arcmin
- 0.3-10 keV energy range

TAROT

ROTSE

ZADKO

ROTSE 3a
- Four 45 cm telescopes
- Fov 1.85° x 1.85°
- Slewing time ~ 10s

Zadko
- One-metre telescope
- Fov 23 x 23 arcmin
- Max. Slew speed 3°/s
TAToO Alerts

Since 2009 **108 alerts** sent:
- 11 not followed (telescope maintenance, too close to the Sun...)
- 97 followed by at least 1 telescope and at least 1 night
- 90 followed by at least 1 telescope and at least 3 nights
TAToO Results

Hypothesis: neutrino emission simultaneously with photons
- No transient optical counterpart associated with a neutrino detection
- Upper limits on transient sources magnitude

<table>
<thead>
<tr>
<th>Alert</th>
<th>Delay since trigger</th>
<th>U.L. Mag (S/N=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANT100123A</td>
<td>15h 20m 15s</td>
<td>12.0</td>
</tr>
<tr>
<td>ANT100302A</td>
<td>24h 20m 08s</td>
<td>15.7</td>
</tr>
<tr>
<td>ANT100725A</td>
<td>00h 01m 15s</td>
<td>14.5</td>
</tr>
<tr>
<td>ANT100922A</td>
<td>01h 08m 06s</td>
<td>14.0</td>
</tr>
<tr>
<td>ANT101211A</td>
<td>12h 03m 30s</td>
<td>15.1</td>
</tr>
<tr>
<td>ANT110409A</td>
<td>00h 04m 17s</td>
<td>18.1</td>
</tr>
<tr>
<td>ANT110529A</td>
<td>00h 07m 33s</td>
<td>15.6</td>
</tr>
<tr>
<td>ANT110613A</td>
<td>00h 01m 08s</td>
<td>17.0</td>
</tr>
<tr>
<td>ANT120730A</td>
<td>00h 00m 21s</td>
<td>17.6</td>
</tr>
<tr>
<td>ANT120907A</td>
<td>00h 00m 25s</td>
<td>16.9</td>
</tr>
<tr>
<td>ANT121010A</td>
<td>00h 00m 24s</td>
<td>18.6</td>
</tr>
<tr>
<td>ANT121206A</td>
<td>00h 00m 27s</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Based on only detected light curves [kann2010]

Possible interpretation of the TAToO U.L. compared with a sample of regular optical afterglow LC, corrected for Galactic extinction Kann et al. (2010)
TAToO Results

5 alerts sent to the XRT since June 2013
- After a delay of: 23s 25s 18s 18s 24s
- Processing after: 1h08 6h24 5h06 6h43 5h36

No X-ray counterpart associated to a neutrino detection

Possible interpretation of the TAToO U.L.: Afterglow LC detected by Swift/XRT compared with the TAToO limits
Conclusions

1. Transient and multi-messenger analyses are performed, on-line and off-line
2. First results on μ-quasar analysis with ANTARES (2007-2010)
3. The μ-quasar analysis is being updated with new data and new sources
5. Long term TAToO follow-up are currently analysed to look for long transient (core collapse SN)
6. More multi-messenger analysis:
 - Gravitational waves (VIRGO/LIGO)
7. GRB, SGR and Blazars analysis moving to real-time
PLEASE STAND BY...
The ANTARES Neutrino Telescope
The ANTARES Neutrino Telescope

ANTARES is a Neutrino Telescope placed underwater in the sea bed of the Mediterranean Sea at the south of Toulon (France)
Multi-Messenger Analyses in ANTARES

The ANTARES Neutrino Telescope

- String-based detector;
- Downward-looking (45°) PMTs;
- 2475 m deep;

- 12 detection lines
- 25 storeys / line
- 3 PMTs / storey
- 885 PMTs
Detection Mechanism

Atmospheric muons \(\sim 10 \) per second
Atmospheric neutrinos few per day
Cosmic neutrinos few per year (may be)

- Atm muons: quite easy to remove (zenith + quality cuts)
- Atm neutrinos: irreducible isotropic background, low energy
- Optimization cuts selects 3058 neutrino candidates \((\lambda_{cut} > -5.2) \) and 5709 neutrino candidates \((\lambda_{cut} > -5.4) \)

ANTARES skymap for the 3058 neutrino candidates in the case of a \(\lambda_{cut} > -5.2 \) in equatorial coordinates (ANTARES events and studied \(\mu \)-quasars)
Blazar Previous Analysis

- Previous ANTARES AGN analysis:

- From 06/09/2008 to 31/12/2008 (60.8 days of live time)

- High variability, brightness and visibility Fermi Blazar sources (reported in 1FGL / LBAS catalogue): **10 selected sources**

- γ-Ray light curves extracted from FERMI public data

- One neutrino event compatible with 3C 279 in time and direction ($\Delta\alpha=0.56^\circ$) → **post trial value 10%**

- Upper limits on neutrino flux (F.C. @90% C.L.)

| Source | $n(5\sigma)$ | n_{obs} | Fluence U.L. (GeV cm$^{-2}$) [90% C.L. | $\phi \propto E^{-2}$] |
|-----------------|--------------|------------------|--|
| PKS 0208-512 | 4.5 | 0 | 2.8 |
| AO 0235+164 | 4.3 | 0 | 18.7 |
| PKS 0454-234 | 3.3 | 0 | 2.9 |
| OJ 287 | 3.9 | 0 | 3.4 |
| WComae | 3.8 | 0 | 3.6 |
| 3C 273 | 2.5 | 0 | 1.1 |
| 3C 279 | 5.0 | 1 | 2.8 |
| PKS 1510-089 | 3.8 | 0 | 2.8 |
| 3C 454.3 | 4.4 | 0 | 23.5 |
| PKS 2155-304 | 3.7 | 0 | 1.6 |

Neutrino event during 3C 279 flare
Blazars Results

- Upper limits on neutrino flux (Neyman @90% C.L.)
- May be describe the fluence computation criteria
- ...
- Paper on the way...

Preliminary upper limits on the fluence for the FERMI analysis

\[\Phi_\nu @ 90\% \text{ C.L. (erg/cm}^2) \]
Angular performances:

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Angular resolution</th>
<th>Fraction events in FoV</th>
<th>Mean Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HE</td>
<td>0.25–0.3°</td>
<td>96% (GRB)</td>
<td>~7 TeV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68% (SN)</td>
<td></td>
</tr>
<tr>
<td>Directional</td>
<td>0.3–0.4°</td>
<td>90% (GRB)</td>
<td>~1 TeV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50% (SN)</td>
<td></td>
</tr>
</tbody>
</table>

PSF trigger HE

- HE 0.25–0.3°: 96% (GRB), 68% (SN)
- Directional 0.3–0.4°: 90% (GRB), 50% (SN)

Mean Energy

- HE: ~7 TeV
- Directional: ~1 TeV
TAToO Image Subtraction

Image subtraction:

- Image from TAToO follow-up
- Reference image (no signal)
- Residual image

- PSF matched

- Cuts on:
 - SNR
 - Flux variation
 - FWHM...