Abstract

A search for the production of single-top-quarks in association with missing energy is performed in proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with the ATLAS experiment at the Large Hadron Collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the Standard Model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95% confidence level for the top quark and an invisible spin-$1/2$ state with mass between 0 GeV and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95% confidence level for the top quark and an invisible spin-1 state with mass between 0 GeV and 657 GeV.

Keywords

ATLAS - LHC - proton–proton collisions - top quark - single-top-quark - monotop
Search for invisible particles produced in association with single-top-quarks in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

The ATLAS Collaboration
CERN, CH-1211 Geneva 23. Switzerland

Received: date / Revised version: date

Abstract. A search for the production of single-top-quarks in association with missing energy is performed in proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with the ATLAS experiment at the Large Hadron Collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the Standard Model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95% confidence level for the top quark and an invisible spin-1/2 state with mass between 0 GeV and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95% confidence level for the top quark and an invisible spin-1 state with mass between 0 GeV and 657 GeV.

Keywords ATLAS - LHC - proton–proton collisions - top quark - single-top-quark - monotop

1 Introduction

Many theories beyond the Standard Model (BSM) predict enhanced production of events with large missing energy in association with a single reconstructed object. Such events have been searched for at the Large Hadron Collider (LHC), when the single object is either a photon γ [1, 2], a jet [3, 4], or a W or Z boson [5, 6].

This paper presents a search for singly produced top quarks in association with significant missing energy, corresponding to the associated production of one or several undetected neutral particles, and without any other reconstructed object. These neutral particles can be either stable and/or weakly interacting with ordinary matter – providing an interesting interpretation in terms of dark-matter candidates – or long-lived and decaying outside of the detector. The observation of such final states, commonly referred to as monotop events, would be evidence for new phenomena. Moreover, processes involving top quarks are sensitive to BSM physics, due to the large mass of this Standard Model (SM) particle which is close to the electroweak symmetry-breaking scale.

No such process is possible in the SM at tree level: the direct production of a top quark and a Z boson decaying into a pair of neutrinos, without any additional quark, is suppressed by the Glashow–Iliopoulos–Maiani mechanism [7].

This search is performed with the ATLAS detector [8] in pp collisions at $\sqrt{s} = 8$ TeV with the data collected in 2012 at the LHC and corresponding to an integrated luminosity of 20.3 fb$^{-1}$. The ATLAS detector covers the pseudorapidity range $|\eta| < 4.9$ and the full azimuthal angle ϕ.

It consists of an inner tracking detector covering the pseudorapidity range $|\eta| < 2.5$ surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and an external muon spectrometer with large superconducting toroidal magnets.

The search is based on the analysis of top-quark events where the W boson from the top quark decays into a lepton and a neutrino. Previous results of a search for monoton top-production, exploiting the case of fully hadronic top-quark decays, have been published by the CDF Collaboration using $p\bar{p}$ collision data at $\sqrt{s} = 1.96$ TeV, corresponding to an integrated luminosity of 7.7 fb$^{-1}$ [9], and more recently by the CMS Collaboration using pp collision data at $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 19.7 fb$^{-1}$ [10].

1 The ATLAS experiment uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The z-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r, ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln \tan(\theta/2)$.
2 Signal models

Many theoretical models predicting the production of monotop events in hadron colliders have been proposed. In a first class of theories, a charged resonance is produced by down-type antiquark fusion and decays into a top quark and a neutral particle, as in SU(5) models [11], in R-parity-violating SUSY [12] or in hylogenesis models [13, 14]. In a second class of theories, the monotop final state is produced through a non-resonant process, as in R-parity-conserving SUSY [15], or in models where an interaction of a gluon with an up-type quark allows production of a set of invisible particles via a u–t or c–t coupling [16, 17].

Because of the variety of these theories, effective models [20, 21] are used for the search reported in this paper. Furthermore, as minimal extensions of the SM, the effective models tested in this search are required to respect the electroweak gauge structure [22]. The possibilities for the electroweak gauge structure [22] are used for the search reported in this paper.

2.1. Resonant production

- Resonant production of a +2/3 charged spin-0 boson, S, decaying into a right-handed top quark and a neutral, colour singlet, spin-1/2 fermion, f_{met};
- Non-resonant production of a neutral, colour singlet, spin-1/2 boson, v_{met}, in association with a right-handed top quark.

The Feynman diagrams for monotop production in the resonant and non-resonant models are shown in Fig. 1. Each of these effective models corresponds to one of the two classes of BSM theories detailed above.

A detailed study of the phenomenology of the resonant model is available in Ref. [23]. The interaction Lagrangians of the resonant and non-resonant models are given in Eqs. (1) and (2), respectively.

$$
\mathcal{L}_{\text{res}} = \epsilon^{a\beta\gamma} \varphi \phi \bar{f}_{i,R} v_{\text{met}} a_{\text{res}}^{a}(i) j d_{k}^{c} + \varphi \phi \bar{d}_{k}^{c} a_{\text{res}}^{a}(i/2) k \chi + h.c. \quad (1)
$$

$$
\mathcal{L}_{\text{non-res}} = (a_{\text{non-res}})_{ij} V_{iR} \bar{\chi} \gamma_{\mu} u_{R}^{j} + h.c. \quad (2)
$$

The fields φ, χ, and V_{μ} correspond to the S, f_{met}, and v_{met} exotic particles, respectively, the field π ($\bar{\pi}$) represents an up-type (down-type) quark, $(a_{\text{res}}^{a}(i))_{ij}$, $(a_{\text{res}}^{a}(i/2))_{ik}$, and $(a_{\text{non-res}})_{ij}$ are the coupling matrices in the quark-flavour space, the indices i, j, k, represent the quark-generation number, and $\epsilon^{a\beta\gamma}$ is the fully antisymmetric tensor, the indices α, β, and γ being the colour indices. The superscript c denotes the charge conjugation.

The number of free parameters is reduced by assuming $(a_{\text{res}}^{a}(i))_{12} = (a_{\text{res}}^{a}(i))_{21} = (a_{\text{res}}^{a}(i/2))_{13} \equiv a_{\text{res}}$ for the resonant model and $(a_{\text{non-res}})_{13} \equiv a_{\text{non-res}}$ for the non-resonant model, all other elements of these coupling matrices being equal to 0. For each model, the coupling parameter a_{res} or $a_{\text{non-res}}$ and the masses of the exotic particles are independent.

The choice of model parameters $-$ the effective couplings and the masses of the particles $-$ is driven by phenomenological considerations: the particles f_{met} and v_{met} in the resonant and non-resonant models, respectively, are required to have missing transverse momentum as an experimental signature. For the resonant model, in which the f_{met} fermion can decay into a five-body final state, Ref. [23] suggests that for $m(S) = 500$ GeV and an effective coupling of $a_{\text{res}} = 0.2$, the decay length of f_{met} is large enough to be considered as invisible for the detector, as long as $m(v_{\text{met}})$ is below 100 GeV. For the non-resonant model, in which the v_{met} boson can decay into a two-body final state either through a tree-level or a loop-induced interaction, Ref. [22] assumes that the v_{met} boson decays into a set of invisible particles which can be dark-matter candidates. This assumption follows the spirit of several BSM models [16, 17]. Hence, the v_{met} particle in the non-resonant model can be considered to be an invisible spin-1 state with mass $m(v_{\text{met}})$. Studies of possible direct and indirect constraints on monotop model parameters using experimental signatures other than monotop processes are discussed in Refs. [22, 24].

3 Data and Monte Carlo samples

The data used for this analysis are selected from the recorded data streams using single-electron and single-muon triggers [24]. Stringent detector and data quality criteria are applied offline, resulting in a data sample corresponding to an integrated luminosity of 20.3 ± 0.6 fb$^{-1}$ [23].

The signal samples are generated at leading order (LO) in QCD with the matrix-element generator MADGRAPH5 v1.5.11 [26] using FEYNRULES [27, 28] and interfaced with PYTHIA v8.175 [30, 31] for parton showering and hadronisation. The parton distribution function (PDF) set MSTW2008LO [32, 33] is used. Resonant signal samples are generated with the mass of the invisible state f_{met} varying from 0 GeV to 100 GeV, the mass of the S resonance being fixed at 500 GeV following the suggestion in Ref. [23] and non-resonant signal samples are generated with the mass of the invisible state v_{met} varying from 0 GeV to 1000 GeV. The couplings a_{res} and $a_{\text{non-res}}$ are set at a fixed value of 0.2. In addition, two samples are produced for the resonant model for $m(f_{\text{met}}) = 100$ GeV, with coupling strengths fixed at $a_{\text{res}} = 0.5$ and $a_{\text{res}} = 1.0$, in order to check the effect of the resonance width on the signal event kinematics. The total width of the resonance varies quadratically with the coupling strength, corresponding to a width of 3.5 GeV, 21.6 GeV, and 86.5 GeV at $a_{\text{res}} = 0.2$, $a_{\text{res}} = 0.5$, and $a_{\text{res}} = 1.0$, respectively.

Top-quark pair ($t\bar{t}$) and single-top s-channel and Wt events are simulated using the next-to-leading order (NLO) generator POWHEG-BOX v1.2129, v1.1556, and v1.2092, respectively [34, 35], with CT10 PDF [36, 37]. The t-channel single-top events are generated using the LO AcmERT generator v3.8 [38, 39], with CTEQ6L1 PDF [40]. The parton showering, the hadronisation, and the underlying event are modelled using PYTHIA v6.426 [40].

The $t\bar{t}$ cross-section for pp collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV is $\sigma_{t\bar{t}} = 253_{-15}^{+13}$ pb for a top-quark.
mass of 172.5 GeV. It has been calculated at next-to-next-to-leading order (NNLO) in QCD including resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms \(41-46\) with the program Top++ v2.0 \(47\). The PDF and \(\alpha_S\) uncertainties were calculated using the PDF4LHC prescription \(58\) with the MSTW2008 68% CL NNLO \(52, 53\), CT10 NNLO \(55, 56\) and NNPDF2.3 5f FFN \(59\). PDF sets, added in quadrature to the scale uncertainty. The single-top cross-sections are obtained from approximate NNLO calculations: \(87.8_{-9.3}^{+10.2}\) pb (\(t\)-channel), \(22.4\pm1.5\) pb (\(Wt\) process) and \(5.6\pm0.2\) pb (\(s\)-channel) \(50-52\).

The ALPGEN LO generator v2.14 \(53\) is used with PYTHIA v6.266 to generate events with a \(W\) boson produced in association with light or heavy quarks (\(W+light\)-quarks, \(W+b\bar{b}\), \(W+c\bar{c}\), \(W+c\)) and \(Z+jets\) events. The ALPGEN matrix elements include diagrams with up to five additional partons. To remove overlaps between the \(n\) and \(n+1\) parton samples the MLM matching scheme \(54\) is used. Double counting between the \(W+n\) parton samples and samples with associated heavy-quark pair production is removed utilizing an overlap removal based on a \(\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}\) matching criterion. Diboson samples (\(WW\), \(ZZ\), and \(WZ\)) where at least one of the bosons decays leptonically are modelled by HERWIG v6.52 \(55\). The single-boson and diboson simulation samples are normalised to the production cross-sections calculated at NNLO \(56, 57\) and NLO \(58, 59\), respectively.

After event generation, all signal and background samples are passed through the full simulation of the ATLAS detector \(59\) based on GEANT4 \(60\) and reconstructed using the same procedure as for collision data. All Monte Carlo (MC) samples are simulated with pile-up \(2\) and re-weighted to have the same distribution of the mean number of interactions per bunch-crossing as in the data sample (20.7 on average).

2 Extra proton-proton interactions from the same and previous bunch-crossings.
and jets [22] [23]. This analysis requires events to have E_T^{miss} larger than 35 GeV to reduce the multijet background.

The main background to this final-state selection are $t\bar{t}$ pairs where both top quarks decay semi-leptonically, $t \rightarrow \ell b$, with large E_T^{miss} due to one lepton and one jet not being reconstructed, and W+jets production, particularly with jets from heavy-flavour quarks. The background from multijet production due to misidentification as leptons is reduced by imposing a requirement on the sum of the E_T^{miss} and the transverse mass $m_{T}(\ell, E_T^{miss})$ of the lepton-E_T^{miss} system: $m_{T}(\ell, E_T^{miss}) + E_T^{miss} > 60$ GeV. The distributions of kinematic variables and their normalisation for the multijet background are estimated with a data-driven matrix method [21]. All remaining background processes ($t\bar{t}$, single-top, W+jets, Z+jets and diboson production) are modelled using simulated samples and are scaled to the theory predictions described in Sect. 3. Possible contributions from $t\bar{t}Z$ and $t\bar{t}Z$ processes [24] in the $Z \rightarrow \nu\nu$ decay mode are found to be negligible.

A counting experiment approach is followed. The monotop signal is prominent in regions of the phase space characterised by high $m_{T}(\ell, E_T^{miss})$ values, as suggested by Refs. [13, 22]. Hence, in addition to the pre-selection described previously, a criterion requiring $m_{T}(\ell, E_T^{miss}) > 150$ GeV is used to define the signal region. In order to improve the sensitivity of the search, an optimisation of the event selection is performed with simulated data, using well-modelled variables. The lepton and the b-tagged jet are closer to each other when originating from the decay of a top quark than in the case of W+jets and multijet background events. Hence, a criterion imposing the rejection of events with large values of the difference in azimuth between the lepton and the b-tagged jet $|\Delta\phi(\ell, b)|$ is tested, together with increased $m_{T}(\ell, E_T^{miss})$ threshold values. Figure 2 shows the distributions of these two variables for the expected background contribution, and for two mass hypotheses considered for each signal model. For each set of cuts on $m_{T}(\ell, E_T^{miss})$ and $|\Delta\phi(\ell, b)|$, the sensitivity is estimated by calculating the expected limit on the production cross-section with the procedure described in Sect. 5 including the systematic uncertainties detailed in Sect. 5. The optimisation was performed using one mass hypothesis $m(f_{\text{res}}) = 100$ GeV for the resonant model, for which the kinematic distributions have only small variations in the studied mass range. For the non-resonant model, characterised by larger variations of the kinematic distributions with v_{met}, four signal mass hypotheses were studied: $m(v_{\text{met}}) = 0$ GeV, 100 GeV, 300 GeV, and 600 GeV. The resulting best-performing selections, for the tested mass hypotheses, are:

- SRI (resonant model optimisation): $m_{T}(\ell, E_T^{miss}) > 210$ GeV and $|\Delta\phi(\ell, b)| < 1.2$
- SRH (non-resonant model optimisation): $m_{T}(\ell, E_T^{miss}) > 250$ GeV and $|\Delta\phi(\ell, b)| < 1.4$

In order to validate the background model, three control regions orthogonal to the signal region are defined. Figure 3 is a sketch describing the signal and control regions in the $(m_{T}(\ell, E_T^{miss}), |\Delta\phi(\ell, b)|)$-plane. The first control region (CR1) is enriched in W+jets and multijet background events by requiring events to satisfy $60 \text{ GeV} < m_{T}(\ell, E_T^{miss}) < 120$ GeV in addition to the pre-selection criteria. In the second control region (CR2) with a kinematic regime closer to the one of the signal region, the pre-selected events are required to satisfy $120 \text{ GeV} < m_{T}(\ell, E_T^{miss}) < 150$ GeV and the azimuthal separation $\Delta\phi(\ell, b)$ between the lepton and the b-tagged jet must be less than 1.8. Finally, the third control region (CR3) is defined in order to validate the modelling of the

Fig. 2. Distributions normalised to unity of (left) $m_{T}(\ell, E_T^{miss})$ and of (right) $\Delta\phi(\ell, b)$ for events satisfying the pre-selection defined in the text. The expected distributions for the resonant model with $m(S) = 500$ GeV are shown for the $m(f_{\text{met}}) = 0$ GeV and $m(f_{\text{met}}) = 100$ GeV hypotheses, as well as for the non-resonant model for the $m(v_{\text{met}}) = 0$ GeV and $m(v_{\text{met}}) = 1000$ GeV hypotheses. All distributions are compared to the expected distribution for the backgrounds. For the $m_{T}(\ell, E_T^{miss})$ distributions, the last bin includes overflows.

The transverse mass is defined as $m_{T}(\ell, E_T^{miss}) = \sqrt{2p_{T}(\ell) E_T^{miss} (1 - \cos \Delta\phi(p_{T}(\ell), E_T^{miss}))}$, where $p_{T}(\ell)$ denotes the modulus of the lepton transverse momentum, and $\Delta\phi(p_{T}(\ell), E_T^{miss})$ the azimuthal difference between the missing transverse momentum and the lepton directions.
background arising from $t\bar{t}$ events. An event sample dominated by $t\bar{t}$ events is obtained by selecting events with a second b-tagged jet: both b-tagged jets are identified with a b-tagging criterion with an efficiency of 80%, the sub-leading jet satisfies $p_T < 50$ GeV, and the events must satisfy $m_T(\ell, E_T^{\text{miss}}) > 150$ GeV and $|\Delta\phi(\ell, b)| < 1.8$ in addition to the pre-selection criteria. The distributions of $m_T(\ell, E_T^{\text{miss}})$ and of $\Delta\phi(\ell, b)$ in the three control regions are depicted in Fig. 4. Reasonable agreement between the data and the predicted background estimate is found.

5.1 Sample size

Due to the stringent kinematic cuts in the signal regions, the impact of the limited size of the data and simulated samples on the signal and background estimates is a significant source of systematic uncertainty. For the Z^{+}jets, multijet, and single-top-quark s- and t-channel processes, the expected event yield is zero in both channels, for the SRI and SRII selections, respectively. In such cases, a 68% confidence level (CL) upper limit on the yields is calculated, assuming a Poisson distribution, and is taken into account in the limit-setting procedure. This upper limit represents at most 10% of the background contribution.

For the other processes, which have non-negligible contributions, the effect of the limited sample size on expected signal (background) yields varies between 2% and 5% (2 and 9%).

5.2 Object modelling

The effect of the uncertainty on the jet energy scale is a change in the signal (background) event yields of 1–5% (9–10%), depending on the channel and on the signal region. The impact of the jet energy resolution uncertainty, evaluated by smearing the jet energy in the simulation, is a 2–3% (1–2%) effect on the signal (background) rates. The systematic uncertainty associated with the efficiency of the cut on the jet vertex fraction results in yield variations of 2–3% (2–6%) in the signal (background). Uncertainties on b-tagging efficiency and mistagging rates are estimated from data; the effect on signal and background yields is 3–5%. The jet reconstruction efficiency uncertainty has an effect below 1%, except for the background in the SRII region (up to 3%).

Smaller uncertainties arise from the lepton trigger, reconstruction, and identification efficiencies (up to 1%) and from lepton energy scale and resolution (up to 1% for signal and between 1% and 3% for background). The systematic uncertainties related to leptons and jets are propagated to the E_T^{miss}. In addition, uncertainties on the estimation of the contributions of calorimeter energy deposits not associated with any reconstructed objects have an effect below 1% (up to 4%) on expected signal (background) contribution.

5.3 Signal and background acceptance modelling

The uncertainties on the signal and background acceptance due to the choice of PDF are estimated using the CT10 [58, 37], MSTW2008 68% CL NLO [52, 38] and NNPDF2.3 [39, 74] PDF sets with their uncertainties, following the PDF4LHC recommendations [48]. The variations of the signal (background) yields are between 4–11% (5–6%).

The dependence of the $t\bar{t}$ process on the generator and parton showering simulation is evaluated by comparing the nominal sample produced with POWHEG+PYTHIA with three samples generated using the CT10 PDF, one sample produced with POWHEG-BOX v1.4.2129, one sample using the ALPGEN LO multileg generator v2.14 [58], and one sample produced using MC@NLO v4.06 [75, 76]. HERWIG v6.52 [53] is used for parton showering and hadronisation and JIMMY v4.31 [77] for the underlying event. The largest variation, representing 5–11% of the total background yield, arises from the comparison with the
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

Fig. 4. Distributions of (left) $m_T(\ell, E_T^{miss})$ and of (right) $\Delta\phi(\ell, b)$ in (top) the CR1, (middle) the CR2, and (bottom) the CR3 control region, for the electron and muon channels combined. The distributions observed in data, depicted with the points, are compared with the predicted background contributions. In the CR2 and CR3 regions, the negligible multijet contribution is not shown, and neither is the $Z+jets$ contribution in the CR3 region. The multijet background is normalised by the data-driven method, and the other backgrounds are normalised to their theoretical cross-sections. The error bands correspond to the uncertainties due to the statistical uncertainty of the sample added in quadrature with a conservative 50% normalisation uncertainty on the multijet contribution, and with the W+jets and $t\bar{t}$ cross-section uncertainties. The ratios of the observed distributions to the predicted background distributions are shown in the lower frame.
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

ALPGEN+HERWIG sample. For Wt production, the nominal POWHEG+PYTHIA sample is compared with a sample produced with MC@NLO v4.06, leading to a variation of 4–6% on the total background yield. Furthermore, the uncertainty associated with the NLO calculation schemes for the Wt process is evaluated by comparing the nominal sample generated with the diagram removal scheme to a sample using the diagram subtraction (DS) scheme [78]; this uncertainty is 3–5% on the total background yield.

The dependence of the tt event rate on additional radiation is evaluated using a tt sample generated with the A4.06 [80], with the CTEQ6L1 PDF set [40], and coupled with PYTHIA v6.426. The PYTHIA parameters are varied in a manner consistent with a measurement of tt production with additional jet activity [79]. The related variation in the total background is around 5% (9%) in the SRI (SRII) region.

5.4 Background normalisation

Theoretical uncertainties are $-5.9/+5.1$% for the inclusive tt cross-section [47], and 6.8% for the Wt-channel cross-section [51]. An uncertainty of 24.5% on diboson and W+light-quarks rates is also assigned. These estimates come from the uncertainty on the inclusive diboson and W-boson production cross-sections [57] (5% and 4% respectively) and from a conservative assessment based on a prediction for the ratio of the event rate with $n+1$ jets to the event rate with n jets [50], resulting in 24% per additional jet, added in quadrature. A 50% uncertainty, as evaluated in Ref. [82], is assigned to the $W+bb$, $W+cc$, and $W+c$ rates.

5.5 Luminosity

The uncertainty on the integrated luminosity is 2.8% [25], affecting the signal estimates as well as the simulated backgrounds.

6 Results and interpretation

Figure 5 shows the distributions of E_T^{miss} in the SRI and SRII signal regions, comparing the data to the expected signal and background contributions. The expected resonant (non-resonant) signal contribution for the $m(f_{\text{met}}) = 100$ GeV ($m(v_{\text{met}}) = 700$ GeV) hypothesis, normalised to the theoretical cross-section corresponding to $a_{\text{res}} = 0.2$ ($a_{\text{non-res}} = 0.2$), is also shown.

Table 1 reports the expected event yields for the background and signal processes and the observed event yields in the SRI and SRII signal regions. As no excess is observed in data, 95% CL upper limits on the signal production cross-sections are set with the CL_s procedure [53,54]. A log-likelihood ratio (LLR) is used as the test statistic, defined as the ratio of the signal-plus-background hypothesis to the background-only hypothesis. For a given hypothesis, the combined likelihood is the product of the likelihoods for the two channels considered (electron and muon), each resulting from the product of a Poisson distribution representing the statistical fluctuations of the expected total event yield, and of Gaussian distributions representing the effect of the systematic uncertainties. Pseudo-experiments are generated for both hypotheses, taking into account correlations across channels and processes. The fraction of pseudo-experiments for the signal-plus-background (background-only) hypothesis with LLR larger than a threshold defines CL_{s+b} (CL_b). This threshold is set to the observed (background median) LLR for the observed (expected) limit. Signal cross-sections for which $CL_s = CL_{s+b}/CL_b < 0.05$ are considered excluded at the 95% CL.

Figure 6 shows the expected and observed 95% CL excluded cross-section times branching ratio as a function of the mass of the invisible state, for each of the two signal models. In the case of the resonant model, cross-sections corresponding to an effective coupling strength $a_{\text{res}} = 0.2$ are excluded in the whole mass range, but not cross-sections corresponding to $a_{\text{res}} = 0.1$. For the non-resonant model, cross-sections corresponding to $a_{\text{non-res}} = 0.1$ (0.2, 0.3) are excluded up to $m(v_{\text{met}}) = 432$ GeV (657 GeV, 796 GeV).

The cross-sections are proportional to the square of the effective coupling. Thus, a 95% CL upper limit on a_{res} and $a_{\text{non-res}}$ as a function of the mass of the invisible states is extracted. The results are shown in Fig. 7. This upper limit is set assuming that the coupling has no effect on the signal acceptance modelling. In the case of the resonant model, in which the increase of the resonance width with increasing coupling strength changes the signal kinematics, this assumption is validated by using two dedicated simulated samples produced with $a_{\text{res}} = 0.5$ and $a_{\text{res}} = 1.0$ instead of $a_{\text{res}} = 0.2$. These two hypotheses are excluded at 95% CL with the same limit-setting procedure. Since the kinematic distributions are similar in the whole $m(f_{\text{met}})$ range, this assumption is valid for all values of the f_{met} mass. Tables 2 and 3 give the expected and observed 95% CL upper limits on the effective coupling as a function of the mass of the invisible state, for the resonant and non-resonant model, respectively.
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

Fig. 5. Distributions of E_T^{miss} in the (left) SRI and (right) SRII signal regions, for the electron and muon channels combined. The distributions observed in data, depicted with the points, are compared with the predicted background contributions, shown stacked together with the expected resonant (non-resonant) signal contribution for the $m(f_{\text{met}}) = 100$ GeV and $m(S) = 500$ GeV ($m(v_{\text{met}}) = 700$ GeV) hypothesis. The expected backgrounds are normalised to their theoretical cross-sections, and the expected resonant (non-resonant) signal is normalised to the theoretical cross-section corresponding to $a_{\text{res}} = 0.2$ ($a_{\text{nonres}} = 0.2$). The error bands on the expected backgrounds correspond to the uncertainties due to all systematic sources added in quadrature. The first (last) bin includes underflows (overflows). The ratios of the observed distributions to the predicted background distributions are shown in the lower frame.

Table 1. Expected and observed event yields in the SRI (SRII) signal region, combining the electron and muon channels. The expected contribution of resonant (non-resonant) signal corresponding to the lowest and highest mass hypotheses considered in this analysis and of SM backgrounds are given. The first quoted uncertainty gives the uncertainty due to statistics. The second one gives the uncertainties due to all other systematic effects, symmetrised, regrouped, and summed quadratically, without taking into account possible anticorrelations between systematic uncertainties and between processes, for the purpose of this table.

<table>
<thead>
<tr>
<th></th>
<th>SRI</th>
<th>SRII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resonant signal, $m(S) = 500$ GeV, $m(f_{\text{met}}) = 0$ GeV</td>
<td>$253 \pm 5 \pm 34$</td>
<td>$-$</td>
</tr>
<tr>
<td>Resonant signal, $m(S) = 500$ GeV, $m(f_{\text{met}}) = 100$ GeV</td>
<td>$186 \pm 4 \pm 24$</td>
<td>$-$</td>
</tr>
<tr>
<td>Non-resonant signal, $m(v_{\text{met}}) = 0$ GeV</td>
<td>$-$</td>
<td>$2430 \pm 130 \pm 210$</td>
</tr>
<tr>
<td>Non-resonant signal, $m(v_{\text{met}}) = 1000$ GeV</td>
<td>$-$</td>
<td>$8.4 \pm 0.1 \pm 0.8$</td>
</tr>
<tr>
<td>tt</td>
<td>$190 \pm 7 \pm 40$</td>
<td>$94 \pm 5 \pm 19$</td>
</tr>
<tr>
<td>Single-top s-channel</td>
<td>< 0.05</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Single-top t-channel</td>
<td>< 0.10</td>
<td>< 0.10</td>
</tr>
<tr>
<td>Single-top Wt</td>
<td>$19 \pm 4 \pm 14$</td>
<td>$10 \pm 3 \pm 11$</td>
</tr>
<tr>
<td>W+light-quarks</td>
<td>$2 \pm 2 \pm 4$</td>
<td>$3 \pm 3 \pm 4$</td>
</tr>
<tr>
<td>W+bb</td>
<td>$10 \pm 3 \pm 5$</td>
<td>$9 \pm 3 \pm 7$</td>
</tr>
<tr>
<td>W+cc</td>
<td>$5 \pm 3 \pm 3$</td>
<td>$2 \pm 7 \pm 2$</td>
</tr>
<tr>
<td>W+c</td>
<td>$12 \pm 5 \pm 8$</td>
<td>$4 \pm 2 \pm 4$</td>
</tr>
<tr>
<td>Diboson</td>
<td>$1.3 \pm 0.6 \pm 0.7$</td>
<td>$1.0 \pm 0.5 \pm 0.5$</td>
</tr>
<tr>
<td>2+jets</td>
<td>< 4</td>
<td>< 4</td>
</tr>
<tr>
<td>Multijet</td>
<td>< 0.6</td>
<td>< 1.3</td>
</tr>
<tr>
<td>Total background</td>
<td>$240 \pm 10 \pm 50$</td>
<td>$124 \pm 11 \pm 27$</td>
</tr>
<tr>
<td>Data</td>
<td>238</td>
<td>133</td>
</tr>
</tbody>
</table>
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

Fig. 6. Observed and expected limits on the cross section times branching ratio (left) for the resonant model with $m(S) = 500$ GeV and (right) for the non-resonant model, as a function of the mass of f_{met} and v_{met}, respectively. The predicted signal cross-sections for different coupling strengths are also shown.

Fig. 7. Observed and expected excluded coupling strengths (left) for the resonant model with $m(S) = 500$ GeV and (right) for the non-resonant model, as a function of the mass of f_{met} and v_{met}, respectively.
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

Table 2. Expected and observed 95% CL limits on the effective coupling a_{res} as a function of the mass of the invisible state for the resonant model.

<table>
<thead>
<tr>
<th>$m(f_{\text{met}})$ [GeV]</th>
<th>95% CL upper limit on a_{res}</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.13</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.13</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.13</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.13</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>0.14</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.15</td>
<td>0.14</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Expected and observed 95% CL limits on the effective coupling $a_{\text{non-res}}$ as a function of the mass of the invisible state for the non-resonant model.

<table>
<thead>
<tr>
<th>$m(v_{\text{met}})$ [GeV]</th>
<th>95% CL upper limit on $a_{\text{non-res}}$</th>
<th>Expected</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.03</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.013</td>
<td>0.013</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>0.022</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>0.027</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.031</td>
<td>0.030</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>0.034</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>0.038</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.044</td>
<td>0.043</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>0.055</td>
<td>0.052</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.066</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>0.093</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.18</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>0.24</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>0.32</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>0.41</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.52</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>
7 Summary and conclusion

Monotop events are searched for in the $\sqrt{s} = 8$ TeV pp collision data collected in 2012 by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 20.3 fb$^{-1}$. Two classes of signal models are studied, producing right-handed top quarks together with exotic neutral particles giving rise to missing energy. The semi-leptonic decay mode of the top quark is exploited: events with one isolated electron or muon and one b-tagged jet are selected. No significant deviation from the Standard Model predictions is observed. Upper limits on the signal cross-sections and on the corresponding effective couplings are set at 95% CL using the CL$_{s}$ method. In the case of the production of a 500 GeV spin-0 resonance, effective coupling strengths above $a_{\text{res}} = 0.15$ are excluded for a mass of the invisible spin-1/2 state between 0 GeV and 100 GeV. In the case of non-resonant production, effective coupling strengths above $a_{\text{non-res}} = 0.1, 0.2$, and 0.3 are excluded for a mass of the invisible spin-1 state up to 432 GeV, 657 GeV, and 796 GeV, respectively. The observed 95% CL limits are compatible with the expectations.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC, Czech Republic; DNRF, DSNRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, INFN, Italy; IFAE and MNESiC, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNESW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and RosATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NRC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

14 The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks
<table>
<thead>
<tr>
<th>Page</th>
<th>Department/University/Institute, Location, Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Department of Physics, University of Adelaide, Adelaide, Australia</td>
</tr>
<tr>
<td>2</td>
<td>Physics Department, SUNY Albany, Albany NY, United States of America</td>
</tr>
<tr>
<td>3</td>
<td>Department of Physics, University of Alberta, Edmonton AB, Canada</td>
</tr>
<tr>
<td>4</td>
<td>Istanbul Aydin University, Istanbul; Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey</td>
</tr>
<tr>
<td>5</td>
<td>LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France</td>
</tr>
<tr>
<td>6</td>
<td>High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America</td>
</tr>
<tr>
<td>7</td>
<td>Department of Physics, University of Arizona, Tucson AZ, United States of America</td>
</tr>
<tr>
<td>8</td>
<td>Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America</td>
</tr>
<tr>
<td>9</td>
<td>Physics Department, University of Athens, Athens, Greece</td>
</tr>
<tr>
<td>10</td>
<td>Physics Department, National Technical University of Athens, Zografou, Greece</td>
</tr>
<tr>
<td>11</td>
<td>Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan</td>
</tr>
<tr>
<td>12</td>
<td>Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain</td>
</tr>
<tr>
<td>13</td>
<td>(a) Institute of Physics, University of Belgrade, Belgrade, Serbia</td>
</tr>
<tr>
<td>14</td>
<td>Department for Physics and Technology, University of Bergen, Bergen, Norway</td>
</tr>
<tr>
<td>15</td>
<td>Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America</td>
</tr>
<tr>
<td>16</td>
<td>Department of Physics, Humboldt University, Berlin, Germany</td>
</tr>
<tr>
<td>17</td>
<td>Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland</td>
</tr>
<tr>
<td>18</td>
<td>School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom</td>
</tr>
<tr>
<td>19</td>
<td>(a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey</td>
</tr>
<tr>
<td>20</td>
<td>(a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy</td>
</tr>
<tr>
<td>21</td>
<td>Physikalisches Institut, University of Bonn, Bonn, Germany</td>
</tr>
<tr>
<td>22</td>
<td>Department of Physics, Boston University, Boston MA, United States of America</td>
</tr>
<tr>
<td>23</td>
<td>Department of Physics, Brandeis University, Waltham MA, United States of America</td>
</tr>
<tr>
<td>24</td>
<td>(a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil</td>
</tr>
<tr>
<td>25</td>
<td>Physics Department, Brookhaven National Laboratory, Upton NY, United States of America</td>
</tr>
<tr>
<td>26</td>
<td>(a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania</td>
</tr>
<tr>
<td>27</td>
<td>Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina</td>
</tr>
<tr>
<td>28</td>
<td>Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom</td>
</tr>
<tr>
<td>29</td>
<td>Department of Physics, Carleton University, Ottawa ON, Canada</td>
</tr>
<tr>
<td>30</td>
<td>CERN, Geneva, Switzerland</td>
</tr>
<tr>
<td>31</td>
<td>Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America</td>
</tr>
<tr>
<td>32</td>
<td>(a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile</td>
</tr>
<tr>
<td>33</td>
<td>(a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Physics Department, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China</td>
</tr>
<tr>
<td>34</td>
<td>Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France</td>
</tr>
<tr>
<td>35</td>
<td>Nevis Laboratory, Columbia University, Irvington NY, United States of America</td>
</tr>
<tr>
<td>36</td>
<td>Niels Bohr Institute, University of Copenhaven, Kobenhavn, Denmark</td>
</tr>
<tr>
<td>37</td>
<td>(a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy</td>
</tr>
</tbody>
</table>
The ATLAS Collaboration: Search for invisible particles produced in association with single-top-quarks

38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
39 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
40 Physics Department, Southern Methodist University, Dallas TX, United States of America
41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America
42 DESY, Hamburg and Zeuthen, Germany
43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
45 Department of Physics, Duke University, Durham NC, United States of America
46 INFN Laboratori Nazionali di Frascati, Frascati, Italy
47 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany
48 Section de Physique, Université de Genève, Geneva, Switzerland
49 INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy
51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany
55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
78 Department of Physics and Astronomy, University College London, London, United Kingdom
79 Louisiana Tech University, Ruston LA, United States of America
80 Laboratoire de Physique Nucléaire et de Hautes Énergies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81 Fysika institutionen, Lunds universitet, Lund, Sweden
82 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
83 Institut für Physik, Universität Mainz, Mainz, Germany
84 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst MA, United States of America
87 Department of Physics, McGill University, Montreal QC, Canada
88 School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Department of Physics, Massachusetts Institute of Technology, Cambridge MA, United States of America
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V.Skoltech Institute of Nuclear Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
(a) Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Department of Physics, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
Department of Physics, Northern Illinois University, DeKalb IL, United States of America
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
Department of Physics, New York University, New York NY, United States of America
Ohio State University, Columbus OH, United States of America
Faculty of Science, Okayama University, Okayama, Japan
Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
Department of Physics, Oklahoma State University, Stillwater OK, United States of America
Palacky University, RCPTM, Olomouc, Czech Republic
Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
Graduate School of Science, Osaka University, Osaka, Japan
Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
(a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
Petersburg Nuclear Physics Institute, Gatchina, Russia
(a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
(a) Laboratorio de Instrumentacio y Física Experimental de Partículas - LIP, Lisboa; (b) Facultad de Ciencias, Universidad de Lisboa, Lisboa; (c) Departamento de Física, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Física, Universidade do Minho, Braga; (f) Departamento de Física Teórica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Física and CEFITEC de Facultade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
State Research Center Institute for High Energy Physics, Protvino, Russia
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Ritsumeikan University, Kusatsu, Shiga, Japan
(a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
(a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
(a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
(a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculty des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France