Exclusive Production at LHCb

LHCb Implications Workshop

Dan Johnson

CERN

15th October 2014
Overview

1. Central Exclusive Production (CEP) at LHCb
2. Results from run 1
3. Prospects for run 1 data
4. Extending LHCb’s rapidity coverage for next year
Interactions of the form $pp \rightarrow pEp$

QED background: 2γ exchange
- QED process with small proton form-factor corrections

Pomeron exchange:
- Pomeron is, at leading order, a pair of gluons in $++$ state

- **Photoproduction:** Photon-pomeron fusion
 - Probes gluon density at small values of proton’s momentum fraction, x
 - Perturbative calculations accessible for higher mass of E

- **Double pomeron exchange:** Pomeron-pomeron fusion
 - E must be neutral $PC = ++$, no net flavour: $f_{0,2}, \chi_{c,b}, \gamma\gamma, JJ, H$
 - Low $M(E)$: spectroscopy studies. High $M(E)$: QCD and the pomeron
Experimental signature:

- ‘Exclusive’ candidate (e.g. $J/\psi \rightarrow \mu^+ \mu^-$) large rapidity gaps with respect to beam

At LHCb:

- Low pile-up
- Detection in pseudorapidity range $2 \rightarrow 5$
- Fully reconstruct and identify tracks from exclusive candidate
- Require no other detector activity
 - Implicitly require only one pp interaction
 - Run 1 effective $L_{\text{int}}: \sim 600 \text{ pb}^{-1}$

Establishing the rapidity gap

- Require no other tracks reconstructed
- Require no γ or π^0 activity in calorimeter
- Even beyond LHCb acceptance: exclusive candidate p_T^2 distribution
 - Regge theory implies exclusive candidate $\frac{d\sigma}{dt} \approx \exp(b_s t)$, where $t \approx -p_T^2 c^2$
 - Proton-dissociative background: similar exponential but with harder p_T^2
Overview

1. Central Exclusive Production (CEP) at LHCb
2. Results from run 1
3. Prospects for run 1 data
4. Extending LHCb’s rapidity coverage for next year
Measurement: differential production cross-section (J Phys G41 055002)

\[pp \rightarrow p(J/\psi \text{ or } \psi(2S) \rightarrow \mu^+\mu^-)p \]

Motivation

- Exchange of a photon and pomeron
- Calculable using pQCD, depends on gluon PDFs
- In LHCb rapidity range, probe \(x \) down to \(5 \times 10^{-6} \)
- Sensitive to saturation effects
- Sensitive to odd-parity pomeron partner, ‘odderon’ (replacing photon)

‘Empty-detector’ signal and estimate of exclusivity

(a) Dimuon mass fit

(b) Example: \(J/\psi p_T^2 \) fit
1) Exclusive J/ψ and $\psi(2S)$ production

Interpretation

- LO and NLO extrapolations from HERA data have been performed \(^1\)
- J/ψ (left) and $\psi(2S)$ (right) data are superimposed: good agreement with NLO

\(^1\) JHEP 1311 (2013) 08
2) Double charmonium production

Measurement: production cross-section (J Phys G41 115002)

$$pp \rightarrow p(X)p, \; X = \{J/\psi J/\psi, J/\psi\psi(2S), \psi(2S)\psi(2S), \chi_{ci}\chi_{ci}\}$$

Motivation

- Exchange of two pomerons
- Cross-section and mass spectrum sensitive to exotics: e.g. glueballs or tetraquarks
- Relate cross section to calculated $$\sigma(gg \rightarrow J/\psi J/\psi)$$ using Durham model

‘Empty-detector’ signal

(c) Dimuon mass fit
(d) Example: $$J/\psi J/\psi \; p_T^2$$ fit
Interpretation

- First observation of CEP for pairs of charmonium mesons
- Estimate of exclusive component in ‘empty-detector’ signal is $42 \pm 13\%$
- Measurement of $\sigma(J/\psi J/\psi) = 24 \pm 9 \text{pb}$ and $\frac{\sigma(J/\psi J/\psi(2S))}{\sigma(J/\psi J/\psi)} = 1.1^{+0.5}_{-0.4}$ in reasonably good agreement with subsequent theoretical calculation
- Observed $J/\psi J/\psi$ mass spectrum in good agreement with shape (independent of renormalisation/factorisation scales) from MSTW08LO (cf inclusive $J/\psi J/\psi$ mass spectrum).

\[\text{d}N/\text{d}M_{\psi\psi} \text{ [Events/GeV]}\]

2arXiv:1409.4785

3PLB 707 52
1. Central Exclusive Production (CEP) at LHCb
2. Results from run 1
3. Prospects for run 1 data
4. Extending LHCb’s rapidity coverage for next year
Ongoing analyses

Young field in LHCb, but maturing rapidly

Photoproduction

- Gluon PDF: natural to extend dimuon mass range (e.g. \(\Upsilon(1S, 2S, 3S) \)) where:
 - Heavier central system \(\Rightarrow \) pQCD
 - Probe very low \(x \)

\[(e) \ 37 \text{pb}^{-1} \ \text{dimuon mass spectrum} \]

Predictions exist for the \(\Upsilon \) CEP differential cross section:
Ongoing analyses

Pomeron pomeron fusion

- Di-meson production (e.g. $\pi\pi$, KK, $D\bar{D}$?)
- Heavy quark systems (χ_c, χ_b, \ldots)
 - Decaying to $\mu^+\mu^-\gamma$
 - Expect separation of $\chi_{c0,1,2}$ states using converted photons

Spectroscopy studies: $X(3872)$

- LHCb observed 1^{++} inclusively
- Can it be seen exclusively?

(f) $\mu^+\mu^-\gamma$ spectrum in 37pb$^{-1}$

(g) Inclusive $X(3872)$
Overview

1. Central Exclusive Production (CEP) at LHCb
2. Results from run 1
3. Prospects for run 1 data
4. Extending LHCb’s rapidity coverage for next year
Biggest challenge currently is to establish the rapidity gap

High proportion (50% for $J_\psi J_\psi$ CEP) of ‘empty-detector’ signal where proton dissociation escapes down the beampipe

LHCb hopes for $\sim 5fb^{-1}$ during run II at low pile-up

Install scintillators either side of LHCb

Veto showers from high rapidity particles interacting with the beam-pipe elements
Simulated energy densities in first scintillator station

(h) Min-bias
(i) Single-diffractive
(j) CEP-like

- Each station must be sensitive to ~ 100 hits to effectively veto single diffractive events, while tolerating ~ 2500 hits/event in minimum bias operating conditions.
- Efficiency is good even for low energy particles, beyond geometric acceptance due to showering.
Installation and commissioning status

- Four of five stations installed and cabled
- Commissioning tests underway
- Read-out chain maturing
Summary

Exciting opportunities for CEP studies at LHCb

- **LHCb’s forward acceptance** provides unique window on CEP
- **Spectroscopy** in a very clean environment
- **QCD studies**
 - very low-x gluon PDF
 - increased \sqrt{s} allows probing of even lower x (CEP $J/\psi \to x = 2 \times 10^{-6}$)
 - nature of pomeron
 - sensitivity to glueballs, odderons, tetraquarks
- **Run 1**:
 - published analyses: $J_\psi/\psi(2S)$ and double-charmonium CEP
 - many more analyses anticipated
- **Introduction of FSCs** for 2015 will greatly enhance LHCb’s CEP programme