Quarkonium Polarization at LHCb

Yanxi ZHANG
Tsinghua University, Beijing
on behalf of the LHCb collaboration

Quarkonium 2014
10-14 Nov. 2014
CERN, Geneva
Outline

- Introduction
- LHCb experiment and data taking
- Prompt J/ψ polarization measurement
- Prompt $\psi(2S)$ polarization measurement
- Summary and prospects

More LHCb quarkonium productions summarized in talk by E. Tournefier
Introduction

- Heavy quarkonium: bound state of $Q\bar{Q}$ with $M_Q \gg \Lambda_{QCD}$, $\nu^2 \ll 1$
 - Factorization: hard production of $Q\bar{Q}$ at distance $\sim M_Q$, hadronization of $Q\bar{Q} \rightarrow H$
 - Probe both perturbative and non-perturbative aspects of QCD

- Color Singlet Mechanism (CSM)
 - $Q\bar{Q}$ colorless, coincides H in quantum numbers
 - Logarithm infrared divergences in P-wave production
 - Poor description of production data at high-p_T, better agreement at NLO and NNLO*

![Graph](image)

EPJ C61 (2008) 693
Non-relativistic QCD (NRQCD)

- All intermediate $Q\bar{Q}$ states contribute to quarkonium production
- Described by non-perturbative long distance matrix elements (LDME)
- LDMEs determined by fitting experimental production data, could describe data very well
- Tested by independent data and/or independent measurements

- Polarization at high-p_T
 - Gluon fragmentation dominates \rightarrow transverse polarization of 1^{--}
 - CSM predicts longitudinal polarization
LHCb experiment

Aiming for precision measurements in heavy flavor

Good vertex separation:
Decay time resolution 45 fs for $B_s \rightarrow J/\psi \phi$
Discriminating prompt quarkonium production and those from b decays

RunI: 3 fb$^{-1}$

High muon ID performance:
$\sim 97\%$, with 1-3 % $\pi \rightarrow \mu$ mis-id probability

QWG 2014
Prompt J/ψ polarization

EPJ C73 (2013) 2631
\(J/\psi \) reconstructed in \(J/\psi \rightarrow \mu^+ \mu^- \) decays

Polarization encoded in muon angular distribution:

\[
\frac{dN}{d\Omega} \propto 1 + \lambda_\theta \cos \theta + \lambda_{\theta \phi} \sin 2\theta \cos \phi + \lambda_\phi \sin^2 \theta \cos 2\phi
\]

- Full angular analysis to determine all three parameters simultaneously

- Full transverse/longitudinal polarization: \((\lambda_\theta, \lambda_{\theta \phi}, \lambda_\phi) = (+1, 0, 0)/(-1, 0, 0)\)

Angular distribution reported in two frames

- Helicity frame (HX): \(z \parallel \vec{P}_{J/\psi} \) in lab frame
- Collins-Soper frame (CS):
 \(z \sim \) direction of colliding partons in \(J/\psi \) rest frame

- One frame invariant parameter

\[
\lambda_{\text{inv}} = \frac{\lambda_\theta + 3\lambda_\phi}{1 - \lambda_\phi}
\]
Selection

- Dataset: ~ 0.37 fb$^{-1}$ pp collision at $\sqrt{s} = 7$ TeV
- Forward acceptance: $2<p_T<15$ GeV, $2.0<y<4.5$
- Dedicated muon triggers, loose muonID, good vertex
 - Very efficient, resulting high signal/background ratio
- J/ψ from b suppressed by pseudo-proper time cut
 \[\tau_z = \frac{d_z M_{J/\psi}}{p_z} \]
 Fraction of J/ψ from b reduces from 15% to 3%

Crystal ball + Straight line fit
Strategy

- Weighted unbinned maximum likelihood fit

\[
\ln \mathcal{L} = \alpha \sum_{i=1}^{N_{\text{tot}}} w_i \times \ln \left[\frac{P(\cos \theta_i, \phi_i | \lambda_\theta, \lambda_{\theta\phi}, \lambda_\phi) \epsilon(\cos \theta_i, \phi_i)}{\text{Norm}(\lambda_\theta, \lambda_{\theta\phi}, \lambda_\phi)} \right]
\]

- \(P(\cos \theta, \phi | \lambda_\theta, \lambda_{\theta\phi}, \lambda_\phi) \equiv 1 + \lambda_\theta \cos \theta + \lambda_{\theta\phi} \sin 2\theta \cos \phi + \lambda_\phi \sin^2 \theta \cos 2\phi\) angular distribution

- \((\cos \theta_i, \phi_i)\): experimental observables for each event

- \(\epsilon(\cos \theta_i, \phi_i)\): efficiency, not uniform in general, determined with simulation

- \(\text{Norm}(\lambda_\theta, \lambda_{\theta\phi}, \lambda_\phi)\): normalization of numerator

- \(w_i\): sWeights to subtract background, \(\alpha \equiv \sum_{i=1}^{N_{\text{tot}}} w_i / \sum_{i=1}^{N_{\text{tot}}} w_i^2\): to correctly estimate stat. uncertainty

\[\text{arXiv:0905.0724}\]
Efficiency in simulation validated using $B^+ \rightarrow J/\psi K^+$ decay

- J/ψ completely longitudinally polarized in B^+ rest frame ($\lambda_\theta = -1$)
- Discrepancy of angular distribution due to imperfectness of simulation of muon efficiencies

Corrections determined as function of (p, η) of muon

- Remove inconsistencies in $B^+ \rightarrow J/\psi K^+$ events
- Applied to inclusive J/ψ simulation
Results

- Both direct production and feed down included → prompt J/ψ
- $(\lambda_\theta, \lambda_{\phi}, \lambda_{\phi})$ measured in (p_T, y) bins of J/ψ in HX&CS independently
- No large polarization observed, no strong p_T dependence
- Weighted average: $\lambda_\theta = -0.145 \pm 0.027$ in HX, small longitudinal polarization
 - Weights according to signal yields in each (p_T, y) bin
- λ_{inv}: good agreement in HX and CS
Comparison with ALICE

- ALICE: $2 < p_T < 8 \text{ GeV}$, $2.5 < y < 4.0$, \(J/\psi \) from \(b \) decay included (inclusive)
 - Effect due to secondary contamination is small as studied by LHCb
 - Two measurements compatible

\(\lambda_\theta \) also consistent
Comparison with theory

Calculations at NLO

- CSM: no feed down, PRL 108 (2012) 172002
- NRQCD: no feed down, PRL 108 (2012) 172002
- NRQCD: w/ feed down, PRL 110 (2013) 042002
- NRQCD: w/ feed down, PRL 108 (2012) 242004

Different LDMEs

LDMEs matter and not trivial

Feed down could also change polarization prediction

arXiv:1410.8537
Prompt $\psi(2S)$ polarization

EPJ C74 (2014) 2872
Compared to J/ψ analysis

- Feed down negligible, no ambiguity in interpreting results
 \[
 \frac{\sigma(\psi(2S)) \times B(\psi(2S) \to \mu^+\mu^-)}{\sigma(J/\psi) \times B(J/\psi \to \mu^+\mu^-)} \sim 2\% , \ 1 \text{ fb}^{-1} pp \text{ data at } \sqrt{s} = 7 \text{ TeV}
 \]
- Higher combinatorial background → tighten muonID
- Selections and strategy similar
- Measurements performed in $3.5 < p_T < 15 \text{ GeV}, 2.0 < y < 4.5$

![Crystal ball + Straight line fit](image)
Results

- λ_θ compatible with no polarization in HX frame
- λ_{inv} shows small negative polarization, consistent in HX&CS frame
- λ_θ in HX frame and λ_{inv} no significant kinematic dependence
- No strong transverse/longitudinal polarization, supporting CMS results

λ_θ in HX frame
λ_θ in CS frame
λ_{inv}
Comparison with theory

* CSM: no feed down, PRL 108 (2012) 172002
* NRQCD: no feed down, PRL 108 (2012) 172002
* NRQCD: w/ feed down, PRL 110 (2013) 042002
* NRQCD: w/ feed down, PRL 108 (2012) 242004
* Consistent with NRQCD at low p_T
* Don’t support large transverse polarization at high-p_T predicted by NRQCD
Heavy quarkonium production ideal to study perturbative and non-perturbative part of QCD

Prompt J/ψ and $\psi(2S)$ polarization measured as a function of (p_T, y) at LHCb

in range $2(3.5) < p_T < 15 \text{ GeV}$, $2.0 < y < 4.5$

Results of ALICE, CMS and LHCb consistent

No large transverse/longitudinal polarization observed, no evidence of kinematic dependence

In general, do not favor NRQCD or CSM calculations at NLO

Prospects:

G polarization coming soon

New opportunities with LHC RunII at $\sqrt{s} = 13 \text{ TeV}$

Stay tuned
Spare slides
Polarization frames
J/ψ polarization parameter $\lambda_\phi, \lambda_{\theta \phi}$
$\psi(2S)$ 2D efficiency & λ_{inv} variation

Error bars are statistical uncertainty

LHCb $\sqrt{s} = 7$ TeV

$\psi(2S) p_T$ [GeV/c]
ψ(2S) polarization parameter λ_ϕ, $\lambda_\theta\phi$