Quarkonium production at LHCb

Edwige Tournefier, lapp.
on behalf on the LHCb collaboration

Quarkonium 2014, Cern

November, 13th 2014
Introduction

• Quarkonia production provides a test of QCD
• Quarkonia production mechanism is still not well understood

• Inclusive production ($J/\psi, \Upsilon, \chi_{b,c}, \eta_c$):
 – Test of Higher Order corrections
 – Relative importance of color singlet and color octet contributions
 – Tuning of MC
 \Rightarrow understanding of the background for searches for new physics

• Exclusive production of charmonium
 – Pomeron exchange
 – Proble gluon PDF at low x
Outline

• The LHCb detector and quarkonia

• J/ψ and Y production

• Feeddown from χ_b to Y’s

• χ_b production

• η_c production

• Exclusive production of charmonium
The LHCb detector and quarkonia

- Efficient muon trigger: $P_T(\mu_1) \times P_T(\mu_2) > 1.68 \text{ (GeV/c)}^2$
- Very good momentum resolution (0.5%): $\sigma = 13 \text{ MeV/c}^2$ on J/ψ
- Impact parameter resolution: $\sigma = 20 \mu\text{m} \Rightarrow$ prompt/secondary
- Very good muon identification: $\varepsilon \sim 97\%$ for ~1% $\pi \rightarrow \mu$ misid
- Backward coverage of the VELO: important for exclusive production
- Rapidity coverage: $2.0 < y < 4.5$

Results based on:
- 1fb$^{-1}$ at 7TeV (2011 data)
- 2fb$^{-1}$ at 8TeV (2012 data)
J/ψ production at 8 TeV

- J/ψ production measurement in LHCb:
 - Use J/ψ → µµ decay
 - Low pT muon trigger: 2 muons p_T > ~0.5 GeV/c
 - π→µ misid ~0.7%

 - prompt and from-b yields from 2D fit of m(µµ) and t_z
 - J/ψ is assumed to be produced unpolarized as supported by LHCb EPJ.C73(2013)2631, and ALICE PRL108(2012)082001 measurements
 - Efficiencies (trigger, µ id, reconstruction) validated using data-driven techniques

 - April 2012 (small) data sample used: 18.4±0.9 pb⁻¹
J/ψ production at 8 TeV

- Double differential cross-section for $p_T<15\text{GeV}/c$ and $2.0<y<4.5$

Prompt J/ψ

J/ψ from-b

In agreement with NLO NRQCD

In agreement with FONLL

PRL98(2007)252002
PRL106(2011)022003
EPJC61(2009)693

JHEP10(2012)137
JHEP05(1998)007
Y Production at 8 TeV

- Same analysis as for J/ψ (except no from-b)
- Assumption: Y not polarized as supported by CMS measurement ([PRL110(2013)081802])
- April 2012 (small) data sample used: 50.6±2.5 pb⁻¹
Y Production at 8 TeV

Y(1S)

\[
B_{1S} \times \frac{d\sigma_{1S}}{dp_T} [\text{nb/(GeV/c)}] \\
\]

\[
\begin{array}{c}
\text{CSM NLO} \quad \text{PRL98(2007)252002} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CSM NNLO}^* \quad \text{PRL101(2008)152001} \\
\end{array}
\]

\[
\sum_{n=1}^{3} \text{(S)} \\
\]

\[
Y(2S) \\
\]

\[
B_{2S} \times \frac{d\sigma_{2S}}{dp_T} [\text{nb/(GeV/c)}] \\
\]

\[
\sum_{n=1}^{3} \text{(S)} \\
\]

\[
Y(3S) \\
\]

\[
B_{3S} \times \frac{d\sigma_{3S}}{dp_T} [\text{nb/(GeV/c)}] \\
\]

\[
\sum_{n=1}^{3} \text{(S)} \\
\]

• Comparison to theory:
 - CSM NLO PRL98(2007)252002 underestimates production
 - agreement with CSM NNLO* PRL101(2008)152001

!! Measurement includes feedown – not theory !!
Y feed-down from χ_b

- Add a photon to the Y candidates to study the transitions

$$\chi_b(mP) \rightarrow \gamma Y (nS) \quad (pT(\gamma) > 600 \text{ MeV}/c)$$

$$m(\chi_b) = m(\mu \mu \gamma) - m(\mu \mu) + m_{\text{PDG}}(Y): \text{cancellation of the detector resolution on Y invariant mass}$$

$$\Rightarrow \text{First observation of } \chi_b(3P) \rightarrow \gamma Y (3S)!$$
Y feed-down from χ_b

- Feeddown derived from:

$$R^\chi_b = \frac{N_{\chi_b}}{N_Y} \times \frac{\mathcal{E}_Y}{\mathcal{E}_{\chi_b}}$$

- Systematic uncertainties:
 - photon efficiency: 3%
 - Unknown polarisation: 1-9%
 - Modeling of the 2 χ_b spin states (relative rate and mass splitting): up to 20%

\Rightarrow Feeddown \sim 30% for all Y’s!

In agreement with prediction from NLO NRQCD (arxiv:1410.8537)
Relative production of $\chi_{b,c}$ spin states

- Study the relative production of the 2 spin states $\chi_{b(c)2}(1P)$ and $\chi_{b(c)1}(1P)$
 ⇒ test color octet and color singlet relative contributions
- Use converted photons in order to separate the 2 states ($\sigma=1.2$ MeV for χ_b)
 - Drawback: low efficiency

⇒ χ_b and χ_c results in agreement
⇒ Ratio of cross-section ~ flat with pT
⇒ Increase predicted by LO NRQCD at low pT seems softer

⇒ better agreement with prediction from NLO NRQCD (arxiv:1410:8537)
\(\chi_b(3P) \) mass

- Using all radiative transitions \(\chi_b(3P) \rightarrow \gamma \ Y(1,2,3S) \) with converted and non-converted photons

\[
\chi_b(3P) \rightarrow Y(1S) \ \gamma(\rightarrow ee)
\]

\[
\chi_b(3P) \rightarrow Y(2S) \ \gamma(\rightarrow ee)
\]

\[
\chi_b(3P) \rightarrow Y(3S) \ \gamma
\]

\[
\Rightarrow m(\chi_{b1}(3P)) = 10512.1 \pm 2.1_{\text{exp}} \pm 0.9_{\text{model}} \text{ MeV}/c^2
\]

In agreement with ATLAS measurement: \(m(\chi_b(3P)) = 10530 \pm 5 \pm 9 \text{ MeV}/c^2 \) PRL108(2012)152001

and theoretical prediction: \(m(\chi_{b1}(3P)) \sim 10516 \text{ MeV}/c^2 \) PRD38(1988)279
\(\eta_c \) production

- Theory: NRQCD predicts different pT dependance for \(\eta_c \) and J/\(\psi \) production (due to spin difference)

- LHCb analysis:
 - Use common decay of \(\eta_c \) and J/\(\psi \) to p\(\bar{p} \) and good LHCb particle ID for protons
 - \(pT(p\bar{p}) > 6.5 \text{GeV/c} \)
 - Clear signal in from-b sample \((t_z > 80 \text{fs}) \) used for parametrizing the prompt signal shapes \((t_z < 80 \text{fs}) \)
 + measurement of \(\eta_c \) natural width and \(\eta_c \)-J/\(\psi \) mass difference
η_c production

- Normalize η_c to J/ψ using J/ψ absolute cross-section measurement

\Rightarrow η_c production cross sections for $2<y<4.5$ and $p_T > 6.5$ GeV/c:

$\sigma_{\eta_c(1S)}^{\sqrt{s}=7\text{ TeV}} = 0.52 \pm 0.09 \pm 0.08 \pm 0.06 \sigma_{J/\psi, B} \text{ \mu b}$,

$\sigma_{\eta_c(1S)}^{\sqrt{s}=8\text{ TeV}} = 0.59 \pm 0.11 \pm 0.09 \pm 0.08 \sigma_{J/\psi, B} \text{ \mu b}$,

\Rightarrow Input to theory for estimate of CS/CO contributions (arXiv: 1411.1247)

\Rightarrow Inclusive branching fraction of b-hadrons to η_c

$\mathcal{B}(b \rightarrow \eta_c(1S)X) = (4.88 \pm 0.64 \pm 0.25 \pm 0.67_B) \times 10^{-3}$

Uncertainty from $\text{Br}(\eta \rightarrow p\bar{p})$, $\text{Br}(J/\psi \rightarrow p\bar{p})$ and $\text{Br}(b \rightarrow J/\psi X)$

\Rightarrow Similar p_T dependance
Exclusive charmonium production

- **Exclusive J/ψ, $\psi(2S)$ and χ_c production:**
 - test of QCD and pomeron exchange
 - sensitive to gluon-saturation effects
 - provides constraints on gluon PDF at small x (5×10^{-6})

- **LHCb analysis:**
 - single J/ψ, $\psi(2S)$ exclusive production
 - double charmonium exclusive production: J/ψ, $\psi(2S)$ and χ_c

⇒ **select events with**
 - exclusively 2 or 4 tracks identified as μ (no other activity)
 - Use backward extension of the vertex detector
 - no photons or 1 for $\chi_c \rightarrow J/\psi \gamma$
 - low p_T ($>400\text{MeV/c}$)
Exclusive J/ψ and $\psi(2S)$ production

- **Backgrounds:**
 - Non resonant (QED)
 - Feeddown (χ_c)
 - Inelastic

- **Signal and inelastic background shapes:**
 - Regge theory: $\exp(-bp_T^2)$
 - b parameters fitted to data in agreement with extrapolation from HERA’s data

Shapes from Regge theory
In agreement with extrapolation of HERA’s measurement
Exclusive J/ψ and $\psi(2S)$ production

- Differential cross section in agreement with NLO prediction and with saturation models

LO and NLO
JHEP1311(2013)085
Double charmonium exclusive production

- Similar analysis for double exclusive production of J/ψ, $\psi(2S)$ and χ_c

Cross sections in $2.0 < y < 4.5$ (elastic + inelastic):

$\sigma^{J/\psi J/\psi} = 58 \pm 10{\text{(stat)}} \pm 6{\text{(syst)}} \text{ pb}$,
$\sigma^{J/\psi \psi(2S)} = 63^{+27}_{-18}{\text{(stat)}} \pm 10{\text{(syst)}} \text{ pb}$,
$\sigma^{\psi(2S)\psi(2S)} < 237 \text{ pb}$,
$\sigma^{\chi_c0\chi_c0} < 69 \text{ nb}$,
$\sigma^{\chi_c1\chi_c1} < 45 \text{ pb}$,
$\sigma^{\chi_c2\chi_c2} < 141 \text{ pb}$,

2 J/ψ production cross section in agreement with theory prediction but large errors on both sides.

Shapes in agreement with expectations from single production

Exclusive fraction: $42 \pm 13 \%$
Summary and Prospects

• LHCb is contributing to the progress in understanding quarkonium production:
 Inclusive
 – Differential production cross section (J/ψ, ψ(2S), Y’s, η_c)
 – Including production from b
 – Feeddown of χ_b to Y’s
 Exclusive charmonium
 – Single and double charmonium

⇒ Constraints on QCD models, PDFs, MC tuning

• Prospects
 – Bottomonium measurements are mostly statistically limited ⇒ more to come
 – Y polarisation
 – Production measurements of J/ψ, Y (ψ(2S)) will be repeated at 13 TeV with early 2015 data