LHCb status and perspectives
Photoproduction and diffractive processes in pp, pA and AA collisions

Dan Johnson
CERN

on behalf of the LHCb collaboration

10th December 2014, Sapore Gravis Workshop
1. Forward physics at LHCb

2. The LHCb detector

3. Central Exclusive Production at LHCb
 - Single charmonium
 (J Phys G41 055002)
 - Double charmonium
 (J Phys G41 115002)

4. LHCb prospects
 - Continuing to exploit run 1 data set
 - Increased rapidity coverage for run 2
Forward physics at LHCb: studying QCD

Hard QCD:
- Perturbative and predictive
- Abundant experimental tests

Soft QCD:
- Difficult to calculate
- Crucially important: describes bound hadrons and the vacuum!
- Many opportunities for experimental input

Many open questions:
- Study of colourless objects: pomeron, Reggeon, odderon
- Existence of glueballs?
- Gluon PDF rise violates unitarity: new QCD phenomenology at low energy (saturation?)
Diffraction:

- Processes mediated by colour singlet exchange between colliding hadrons, with large rapidity gaps in the final state
 - Exchange involving pomeron: probe $g(x)$
 - ... in the low-x region where poorly constrained
 - ... but region of great interest: e.g. describe underlying event
 - ... and where saturation effects could contribute
 - Cross sections modified by odderon etc

- Must either tag outgoing protons or detect proton remnants

- ... requires detector coverage at $\eta > 5$!

- **LHCb instruments:**
 - $2 < \eta < 5$
 - $(-3.5 < \eta < -1.5)$

- Can exploit pp and pA collisions

The LHCb detector

- Downstream: $2 < \eta < 5$
- Upstream: $(-3.5 < \eta < -1.5)$
- Maximum rapidity gap 3.5 units
- Can trigger on very low p_T tracks

For diffractive physics need to detect outgoing proton or fragmentation or at least detect central system including presence of rapidity gap

- All diffractive events will have a large rapidity gap
- Most pp interactions distribute particles throughout 4π

Vertex Locator and tracking system:
B and D vertex positions and track momenta

- IP resolution: 20µm
- $\Delta p/p$: 0.4-0.6 %

RICH detectors:
K/π separation

- LHCb trigger reduces 40MHz \rightarrow (hardware) 1MHz \rightarrow (software trigger) 3 kHz
LHCb explores an unusual portion of $x - Q^2$ down to $x = 10^{-6}$

Complementary to LHC GPDs

Effectively one colliding parton in a well-understood region, one unknown

LHCb run 1 data set: 3 fb$^{-1}$ pp collisions: 1.2% precision(!) [JINST 9 12005]

- LHCb average number of interactions per bunch crossing ~ 1.5: ideal
- Low multiplicity required (to establish rapidity gap) so single-interaction events only

![Graph of LHC 7 TeV Kinematics]
LHCb diffractive measurements
Central Exclusive Production at LHC

Interactions of the form \(pp \rightarrow pEp \)

- **QED background:** \(2\gamma \) exchange
 - QED process with small proton form-factor corrections

- **Pomeron exchange:**
 - Pomeron is, at leading order, a pair of gluons in ++ state

- **Photoproduction:** Photon-pomeron fusion
 - Probes gluon density at small values of proton’s momentum fraction, \(x \)
 - Perturbative calculations accessible for higher mass of \(E \)

- **Double pomeron exchange:** Pomeron-pomeron fusion
 - \(E \) must be neutral \(PC = ++ \), no net flavour: \(f_{0,2}, \chi_{c,b}, \gamma\gamma, JJ, H \)
 - Low \(M(E) \): spectroscopy studies. High \(M(E) \): QCD and the pomeron
1) Exclusive J/ψ and $\psi(2S)$ production

Measurement: differential production cross-section $\frac{d\sigma}{dy}$

Selection: J/ψ or $\psi(2S) \rightarrow \mu^+\mu^-$ in 930 pb$^{-1}$ 7TeV data

- Hardware trigger:
 - 1 muon with $p_T > 400$ MeV, or dimuon with each $p_T > 80$ MeV
 - Number of SPD hits < 10

- Software trigger:
 - Dimuon with mass > 2.9 GeV, or with mass < 1 GeV and $p_T < 900$ MeV and distance of closest approach < 150 mm

- Offline:
 - Two identified muons in $2 < \eta(\mu) < 4.5$
 - No photons, no other forward tracks: $\Delta y = 3.5$
 - No backward tracks: $\Delta y = 1.7$
 - Dimuon mass in 65 MeV mass window of the J/ψ and $\psi(2S)$ masses.
1) Exclusive J/ψ and $\psi(2S)$ production

('Empty-detector' signal)

- Fit invariant mass: isolate QED background
 - **Signal**: Crystal ball function: 56,000 J/ψ, 1,600 $\psi(2S)$
 - **QED background**: Exponential (1% J/ψ and 17% $\psi(2S)$ contamination)
1) Exclusive J/ψ and $\psi(2S)$ production

A number of peaking backgrounds remain:

- ‘Feed-down’ decays: contamination can be estimated
 - $\psi(2S) \rightarrow J\psi \pi\pi$: 2.5 ± 0.2%
 - $\chi_c \rightarrow J\psi \gamma$: 7.6 ± 0.9%
 - $X(3872) \rightarrow \psi(2S) \gamma$: 2.0 ± 2.0%

- Inelastic CEP background

These backgrounds tend to produce a J/ψ or $\psi(2S)$ spectrum with harder p_T distribution than the exclusive signal.
1) Exclusive J/ψ and $\psi(2S)$ production

Determining exclusive contribution

- Fit the p_T^2 distribution of the $J/\psi/\psi(2S)$ candidates

Feed-down background: Yield and shape determined using data

Inelastic background: Yield and shape vary
 - J/ψ slope 0.97 ± 0.04 and $\psi(2S)$ slope 0.8 ± 0.2 consistent with HERA

Exclusive signal: Yield and shape vary
 - Signal slope 5.7 ± 1.1 and 5.1 ± 0.7 consistent with Regge theory extrapolation of HERA data
 - Signal purity: $59 \pm 1\%$ (J/ψ) and $52 \pm 7\%$ ($\psi(2S)$)

Largest systematic uncertainties arise through the description of the p_T^2 fit
Interpretation

- LO and NLO1 extrapolations from HERA data have been performed
- J/ψ (left) and $\psi(2S)$ (right) data are superimposed: good agreement with NLO

1JHEP 1311 (2013) 085
2) Double charmonium production

Measurement: production cross-section

\[pp \rightarrow p(X)p, \quad X = \{ J/\psi J/\psi, J/\psi \psi(2S), \psi(2S)\psi(2S), \chi_{ci}\chi_{ci} \} \]

Motivation

- Exchange of two pomerons
- Cross-section and mass spectrum sensitive to exotics: e.g. glueballs or tetraquarks
- Relate cross section to calculated \(\sigma(gg \rightarrow J/\psi J/\psi) \) using Durham model\(^2\)

Selection: in 3 fb\(^{-1}\) \(pp \) collisions

- Very similar to exclusive \(J/\psi / \psi(2S) \) analysis
- No additional tracks reconstructed in the VELO
- No additional photon activity
- Reconstruct \(\chi_c \rightarrow J/\psi \gamma \)

\(^2\) Int.J.Mod.Phys. A29 (2014) 1430031
2) Double charmonium production

‘Empty-detector’ signal

(b) Dimuon mass fit

(c) Example: \(J/\psi J/\psi \) \(p_T^2 \) fit

- Cross section calculated for a range of double-charmonium states
- Largest systematic uncertainty relates to the final state geometrical acceptance (estimated for a range of values of dimeson mass, \(p_T \) and rapidity)

\[
\begin{align*}
\sigma^{J/\psi J/\psi} & = 65 \pm 11 \text{ (stat)}^{+6}_{-13} \text{ (syst)} \text{ pb}, \\
\sigma^{J/\psi \psi(2S)} & = 72^{+30}_{-20} \text{ (stat)}^{+10}_{-16} \text{ (syst)} \text{ pb}, \\
\sigma^{\psi(2S) \psi(2S)} & < 255 \text{ pb at } 90\% \text{ c.l.}, \\
\sigma^{X_{c0}X_{c0}} & < 75 \text{ nb at } 90\% \text{ c.l.}, \\
\sigma^{X_{c1}X_{c1}} & < 49 \text{ pb at } 90\% \text{ c.l.}, \\
\sigma^{X_{c2}X_{c2}} & < 150 \text{ pb at } 90\% \text{ c.l.}.
\end{align*}
\]
2) Double charmonium production

Interpretation

- First observation of CEP for pairs of charmonium mesons
- Estimate of exclusive component in ‘empty-detector’ signal is $42 \pm 13\%$
- Measurement of $\sigma(J/\psi J/\psi) = 24 \pm 9\,pb$ and $\frac{\sigma(J/\psi J/\psi(2S))}{\sigma(J/\psi J/\psi)} = 1.1^{+0.5}_{-0.4}$ in reasonably good agreement with subsequent theoretical calculation\(^3\)
- Observed $J/\psi J/\psi$ mass spectrum in good agreement with shape (independent of renormalisation/factorisation scales) from MSTW08LO

\(^3\)arXiv:1409.4785
LHCb measurement prospects
Extending LHCb rapidity coverage: Concept

- Biggest challenge currently is to establish the rapidity gap
- High proportion (50% for $J_\psi J_\psi$ CEP) of ‘empty-detector’ signal where proton dissociation escapes down the beampipe
- Expecting large run 2 data set at low pile-up

Install scintillators either side of LHCb
 - Detect showers from high rapidity particles interacting with the beam-pipe elements
Simulated energy densities in first scintillator station (LHCb simulation)

- **(a) Min-bias**
- **(b) Single-diffractive**
- **(c) CEP-like**

- Each station must be sensitive to \(\sim 100 \) hits to effectively veto single diffractive events, while tolerating \(\sim 2500 \) hits/event in minimum bias operating conditions.
- Efficiency is good even for low energy particles, beyond geometric acceptance due to showering.
Extending LHCb rapidity coverage: Installation

- The stations installed and cabled
- Commissioning tests underway
- Read-out chain maturing
Summary

Exciting opportunities for CEP studies at LHCb

- LHCb’s forward acceptance provides unique window on CEP and other diffractive physics
- Spectroscopy in a very clean environment
- QCD studies
 - very low-x gluon PDF
 - increased \sqrt{s} allows probing of even lower x (CEP $J/\psi \rightarrow x = 2 \times 10^{-6}$)
 - nature of pomeron
 - sensitivity to glueballs, odderons, tetraquarks
- Run 1:
 - published analyses: $J\psi/\psi(2S)$ and double-charmonium CEP
 - many more analyses would be interesting in future: $\Upsilon(1S, 2S, 3S), X(3872)$, light resonances, double open-charm, χ_c, χ_b...
 - exploit pA data
- Introduction of FSCs for 2015 will greatly enhance LHCb’s CEP programme