Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

Results are reported of a general search for pair production of heavy resonances decaying to pairs of hadronic jets in events with at least four jets. The study is based on up to 19.4 fb$^{-1}$ of integrated luminosity from proton-proton collisions at a center-of-mass energy of 8 TeV, recorded with the CMS detector at the LHC. Limits are determined on the production of scalar top quarks (top squarks) in the framework of R-parity violating supersymmetry and on the production of color-octet vector bosons (colorons). First limits at the LHC are placed on top squark production for two scenarios. The first assumes decay to a bottom quark and a light-flavor quark and is excluded for masses between 200 and 385 GeV, and the second assumes decay to a pair of light-flavor quarks and is excluded for masses between 200 and 350 GeV at 95% confidence level. Previous limits on colorons decaying to light-flavor quarks are extended to exclude masses from 200 to 835 GeV.

1 Introduction

We present the results of a search for pair production of heavy resonances decaying to pairs of light- and heavy-flavor quarks in multijet events. The analysis is based on data samples corresponding to as much as $19.4 \pm 0.5 \text{fb}^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$, collected with the CMS detector at the CERN LHC in 2012. Events that have at least four jets with high transverse momentum (p_T) with respect to the beam direction are selected and investigated for evidence of pair-produced dijet resonances.

Many models of particle physics beyond the standard model (SM) incorporate particles that decay into fully hadronic final states. Supersymmetric (SUSY) models are SM extensions, which simultaneously solve the hierarchy problem and unify particle interactions. In natural SUSY models, where there is minimal fine-tuning, the top quark superpartner (top squark) and the superpartners of the Higgs boson (higgsinos) are required to be light. Natural SUSY is underconstrained in certain R-parity violating (RPV) scenarios. R-parity is a quantum number defined as $R = (-1)^{3B+L+2S}$, where B and L are the baryon and lepton numbers, respectively, and S is the spin. The RPV superpotential, W, is defined as

$$ W = \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c, \quad (1) $$

where λ are the couplings, i,j,k are the generation indices, c is the charge conjugation, L and Q are the doublet superfields of the lepton and quark, respectively, and $E, D,$ and U are the singlet superfields of the lepton, down-type and up-type quarks, respectively. Models that incorporate RPV may allow baryon number violation through a non-zero λ''_{UDD} coupling, and one such unconstrained scenario is that of the hadronically decaying top squark, $\tilde{t} \rightarrow qq'$. If the top squarks are pair-produced in hadronic collisions and then decay via such an RPV process, the final state would consist of four jets with no momentum imbalance in the transverse plane.

In addition to top squark production, hadron collider searches for pair production of resonances decaying into jet pairs are sensitive to a number of models that predict new particles carrying color quantum numbers. Some models predict pair production through gg interactions of color-octet vectors, also called colorons (C), which then decay to quark pairs. The associated final state of the signal is characterized by the presence of four high-p_T jets.

CDF collaboration has placed 95\% confidence level (CL) exclusion limits on top squark production followed by RPV decays in the mass range 50–90 GeV and on coloron production in the mass range 50–125 GeV. At the LHC, ATLAS has placed limits on scalar gluon masses between 100 and 185 GeV, and separately for masses between 150 and 287 GeV. The CMS search for paired dijet resonances resulted in limits on coloron masses between 250 and 740 GeV. However, none of these searches has been sensitive enough to set limits on hadronic RPV decays of directly produced top squarks.

In this paper, we concentrate on searches for top squarks and colorons. The benchmark signals are those where the top squark is the lightest supersymmetric particle, and in one scenario decays into two light quarks, and in the second scenario it decays into a b quark and a light quark. We separately consider the possibility of decays within the coloron model ($gg \rightarrow CC \rightarrow qqqq$).

The analysis employs a well-established search strategy with optimized event selections. The distribution of a variable representative of the top squark mass is investigated for evidence of a signal consistent with localized deviations from the estimated large, steeply falling SM background to data. The estimate of the background is performed with a fit to the falling part.
of the mass spectrum in data, and a SM MC analysis is used to optimize the signal selection and to derive systematic uncertainties.

2 CMS experiment

The central feature of the CMS apparatus \[2\] is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL), which is made of interleaved layers of scintillator and brass absorber. Muons are measured in gas ionization detectors embedded in the steel return yoke outside the solenoid. Extended forward calorimetry complements the coverage provided by the barrel and endcap detectors. Energy deposits from hadronic jets are measured using the ECAL and HCAL. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. \[2\].

3 Triggering and object reconstruction

One data set, representing 19.4 fb\(^{-1}\), was recorded over the entire 2012 data taking period with a multilevel trigger system, which selected events with at least four jets with \(p_T > 80\) GeV to be reconstructed from only calorimeter information. In addition, a second data set was recorded using the same trigger logic, but with a lower jet \(p_T\) threshold. This threshold was decreased progressively from 50 to 45 GeV during the 2012 data taking period. The latter data represent only a subset of the entire 2012 data set, corresponding to an integrated luminosity of 12.4 fb\(^{-1}\). The analysis is separated into two parts: a dedicated “low-mass” search with a focus on the mass region from 200 to 300 GeV, which takes advantage of this lower jet \(p_T\) threshold, and a “high-mass” search focusing on top squark masses above 300 GeV, which uses the entire 19.4 fb\(^{-1}\) data set and extends the expected top squark mass search sensitivity by 40 GeV.

The analysis is based upon objects reconstructed using the CMS Particle Flow algorithm \[23\]. This method combines calorimeter information with reconstructed charged particle tracks to identify individual particles such as photons, leptons, and neutral and charged hadrons. The energy of photons is directly obtained from the calibrated ECAL measurement. The energy of the electron is determined from a combination of its track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons associated to the track. The energy of a muon is obtained from its associated track momentum. The charged hadron energy is calculated from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-suppression effects, and calibrated for the combined response function of the calorimeters. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies. Jets are reconstructed from the particle flow “objects” using the anti-\(k_T\) algorithm \[24\] with a distance parameter of 0.5 in \(y-\phi\) space, where \(y\) is the rapidity.

Jet energy scale corrections \[25\] are applied to account for the combined response function of the calorimeters to hadrons. The corrections are derived from Monte Carlo (MC) simulation and are confirmed with in situ measurements of the energy balance of dijet and photon+jet events. In data, a small residual correction factor is included to account for differences in jet response between data and simulation. The total size of the applied corrections is approximately 5–10\%, and the corresponding uncertainties vary from 3 to 5\%, depending on the measured jet pseudorapidity \(\eta\) and \(p_T\). To remove misidentified jets, which arise primarily from calorimeter
noise, jet quality criteria [26] are applied. More than 99.8% of all selected jets, in both data and signal event samples, satisfy these criteria.

To identify jets produced by b quark hadronization, the analysis uses the medium selection of the combined secondary vertex b-tagging algorithm [27]. The algorithm employs a multivariate technique, which takes as input information from the transverse impact parameter with respect to the primary vertex of the associated tracks and from characteristics of the reconstructed secondary vertices. The output of the algorithm is used to discriminate b quark jets from light-flavor and gluon jets, with typical values of b-tagging efficiency and misidentification probabilities of 72% and 1.1%, respectively.

4 Generation of simulated events

Both top squark production and coloron production are simulated using the MADGRAPH 5.1.5.12 [28] event generator with the CTEQ6L1 parton distribution functions [29], and their decays are simulated using the PYTHIA 6.426 [30] MC program. Top squark signal events are generated with up to two additional initial-state partons, and each top squark decays into two jets through the \(\lambda'' UDD \) quark RPV coupling. Two scenarios are considered for this coupling. First, the coupling \(\lambda''_{312} \), where the three numerical subscripts refer to the quark generations of the corresponding quarks, is set to a non-zero value such that the decay of the top squark to two light-flavor jets is allowed. The second case instead sets a non-zero value for \(\lambda''_{323} \), resulting in top squark decay into one b jet and one light-flavor jet. In both of the above cases, the branching fraction of the top squark decay to two jets is set to 100%. For the generation of this signal, all superpartners except the top squarks are taken to be decoupled [17–21] and no intermediate particles are produced in the top squark decay. Top squarks are generated with masses from 100 GeV to 1 TeV in 50 GeV steps for both coupling scenarios. The cross section estimates [31] are made at next-to-leading order (NLO) with next-to-leading-logarithm (NLL) corrections [32–36], and assigned appropriate theoretical uncertainties [31]. For the coloron signal scenario, we consider the case where each coloron decays into two light-flavor jets with a branching fraction of 100%. For this signal, masses are generated from 100 GeV to 2 TeV, and NLO cross section estimates are used. For both the top squark and coloron models, the natural width of the signal resonance is taken to be much smaller than the resolution of the detector. Backgrounds from SM multijet processes are simulated through matched tree-level matrix elements for two-to-four-jet production using MADGRAPH, and these events are showered through PYTHIA. In all samples, the MLM matching procedure [37] is used, and simulation of the CMS detector is performed with GEANT4 [38].

5 Event selection

Events recorded with the four-jet triggers are required to have a well-reconstructed primary event vertex [39]. Events must also contain at least four jets, each with \(|\eta| < 2.5\) and reconstructed \(p_T\) greater than 80 GeV for the low-\(p_T\) trigger and 120 GeV for the higher-\(p_T\) trigger. With the above requirements, the offline efficiency is above 99% for all selected events.

The leading four jets, ordered in \(p_T\), are used to create three unique combinations of dijet pairs per event. A distance variable is implemented to select the jet pairing that best corresponds to the two resonance decays, \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}\), where \(\Delta \eta\) and \(\Delta \phi\) are the differences in \(\eta\) and \(\phi\) of between two the jets, respectively. This variable [40] exploits the smaller relative distance between daughter jets from the same top squark parent decays compared to that between
Event selection

For each dijet pair configuration the value of ΔR_{dijet} is calculated:

$$\Delta R_{\text{dijet}} = \sum_{i=1,2} |\Delta R^i - 1|,$$

(2)

where ΔR^i represents the separation between two jets in dijet pair i. An offset of 1 has been chosen since this maintains a maximal signal efficiency while minimizing the selection of dijet systems composed of resolved jets from radiated gluons paired with their parent jet. The configuration that minimizes the value ΔR_{dijet} is selected, with ΔR_{min} representing the minimum ΔR_{dijet} for the event. Figure 1 shows the probability density distributions of the fourth highest jet p_T and the ΔR_{min} variable for data events, those of a simulated SM multijet sample, and those of 400 GeV top squark signal sample.

Once a dijet pair configuration is chosen, two additional quantities are used to reject the backgrounds from SM multijet events and incorrect signal pairings: the pseudorapidity difference between the two dijet systems $\Delta \eta_{\text{dijet}}$, and the absolute value of the fractional mass difference $\Delta m / m_{\text{av}}$, where Δm is the difference between the two dijet masses and m_{av} is their average value. In signal events where the correct pairing is chosen, the $\Delta m / m_{\text{av}}$ quantity is peaked at zero with a much narrower distribution than that for SM multijet background or incorrectly paired signal events. Thus, the sensitivity of the search benefits from imposing a maximum value on $\Delta m / m_{\text{av}}$. Similarly, it is advantageous to require that $\Delta \eta_{\text{dijet}}$ be small. Figure 2 shows the probability density distributions of the $\Delta m / m_{\text{av}}$ and $\Delta \eta_{\text{dijet}}$ variables for data events, those of a simulated SM multijet sample, and those of 400 GeV top squark signal sample. An additional kinematic variable Δ is calculated for each dijet system:

$$\Delta = \left(\sum_{i=1,2} |p_T^i| \right) - m_{\text{av}},$$

(3)

where the p_T sum is over the two jets in the dijet configuration. This type of variable has been used extensively in hadronic resonance searches at both the Tevatron and the LHC [16, 41–44]. Requiring a minimum value of Δ results in a lowering of the peak position value of the m_{av} distribution from background SM multijet events. With this selection the modeling of the
background shape can be extended to lower values of \(m_{\text{av}} \), making a wider range of top squark and coloron masses accessible to the search.

Finally, as the presence of heavy-flavor final state jets is a natural extension of the RPV top squark scenarios, the use of b tagging is exploited to further increase signal sensitivity by increasing background rejection. We consider two scenarios: the heavy-flavor search, which uses b tagging to increase the sensitivity for top squark decays into heavy-flavor jets, and the inclusive search, which focuses instead on decays into light-flavor jets.

The optimization for the signal selection is performed as a function of the three kinematic variables described above: \(\Delta m/m_{\text{av}} \), \(\Delta \eta_{\text{dijet}} \), \(\Delta \), as well as the fourth jet \(p_T \). Because the number of expected background events is large, we use \(S/\sqrt{B} \) as the metric for signal optimization, where \(S \) and \(B \) are the number of signal and background events, respectively, and \(B \) is determined by using the \(m_{\text{av}} \) of simulated SM events. The values of \(S \) and \(B \) are set to the number of events within a window of width \(\pm 10\% \) centered at the generated top squark mass, where the value of \(10\% \) is roughly twice the expected resolution for signal masses. We study this metric by evaluating \(S \) and \(B \) based on events passing a number of thresholds of each kinematic variable and obtain several four-dimensional tables, in which a value of \(S/\sqrt{B} \) is found for every combination of the four variables. These tables are produced in the low- and high-mass search regions, and for the inclusive and heavy-flavor analyses separately. An example of this is given in Fig. 3, where the distribution for a 500 GeV top squark and for a fit to the simulated SM multijet distribution are shown for one operating point. The signal shape is bimodal owing to a small fraction of events with incorrect signal pairings, and the Gaussian peak centered at the generated mass is the part of the distribution used in the optimization. The threshold values of the four kinematic variables, corresponding to maximum values of \(S/\sqrt{B} \) in these tables, are taken as a working point. Because of similar results in this optimization, the inclusive and heavy-flavor searches use common working points, with the exception of the heavy-flavor analysis requirement of b tagging. A summary of the requirements is listed in Table 1 for both the low- and high-mass searches. An example of the \(\Delta \eta_{\text{dijet}} \) variable is shown in Fig. 4. The correlation between the pseudorapidity values for the two dijet systems is plotted for both 400 GeV top squark and simulated SM samples, with the region of allowed values of the \(\Delta \eta_{\text{dijet}} \) variable indicated. For the heavy-flavor search, we repeat the optimization procedure by using selections.
based on five different b-tagged jet configurations: at least one b-tagged jet in the event, at least one b-tagged jet in the four highest p_T jets, at least two b-tagged jets in the event, at least two b-tagged jets in the four highest p_T jets, and at least one b-tagged jet in each of the two chosen dijet systems. We find that the optimal selection is the requirement that events contain at least two b-tagged jets among the four highest p_T jets.

![Figure 3: Distributions of the fit to simulated background SM multijet events (solid red line) and a 500 GeV top squark (dashed blue line), normalized to a factor of ten times its cross section, are shown for the high-mass optimization scenario. The dotted vertical lines represent the integration window used by the optimization procedure.](image)

After all selection requirements are applied, the fraction of signal events remaining in the heavy-flavor search ranges from 0.4% to 1.2% for the low-mass search and from 0.4% to 1.6% for the high-mass search. For the inclusive search, the fraction of signal events remaining ranges from 1.4% to 7.4% for the low-mass search and from 1.4% to 6.5% for the high-mass search. In all scenarios, the leading efficiency loss is due to the required jet p_T thresholds. In the data, approximately 20% of the selected events passing the high-mass search criteria are in common with the low-mass search.

Table 1: Summary of the low- and high-mass selection criteria for both the inclusive and heavy-flavor analyses. For the heavy-flavor analysis, in addition to the requirements below, at least two of the four highest p_T jets must be b-tagged.

<table>
<thead>
<tr>
<th>Mass range</th>
<th>Low-mass search</th>
<th>High-mass search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated luminosity</td>
<td>200–300 GeV</td>
<td>>300 GeV</td>
</tr>
<tr>
<td>$\Delta m / m_{av}$</td>
<td><0.15</td>
<td><0.15</td>
</tr>
<tr>
<td>$\Delta \eta_{dijet}$</td>
<td><1.0</td>
<td><1.0</td>
</tr>
<tr>
<td>Δ</td>
<td>>70 GeV</td>
<td>>100 GeV</td>
</tr>
<tr>
<td>Fourth jet p_T</td>
<td>>80 GeV</td>
<td>>120 GeV</td>
</tr>
</tbody>
</table>

6 Background estimation and systematic uncertainties

The dominant background for this search comes from SM multijet events. Following a method used previously for similar resonance searches [42–45], the steeply falling SM background...
Figure 4: The η value for the higher-p_T reconstructed dijet system versus that of the lower-p_T dijet system in the selected pair. This distribution is shown for 400 GeV top squark (left) and simulated SM multijet samples (right), with the right hand scale indicating the expected number of events per bin. The diagonal lines indicate the optimized region of allowed $\Delta \eta_{\text{dijet}}$ values, and events with values falling between the two lines pass this requirement.

The dominant systematic uncertainties that affect the yield originate from six sources: the imperfect knowledge of the integrated luminosity (2.6%) [1]; the simulation of initial-state radiation (5%) [28]; the precision of the jet energy corrections (1–6.2%) [25]; the jet energy resolution (10%) [25]; the efficiency of b-tagging (2%) [27]; the modeling of the effect of multiple pp interactions (<1.5%) [46]. We use log-normal priors to model systematic uncertainties on the signal, which are treated as nuisance parameters. To ensure that the choice of background parameterization does not introduce any bias to the estimate of the background obtained from the fit, studies are performed to derive the appropriate associated uncertainties. For the choice of function used to model the background shape, we consider several families of functions as a basis of comparison: exponentials, power-law functions, and Laurent series. Using a method previously employed by CMS [47], we study the difference in expected yield in the presence of a signal by using each of these functions instead of the default one, using simulated SM events.
Figure 5: The m_{av} distributions with the superimposed fit from Eq. (4). The events shown satisfy requirements for the inclusive searches (left) and the heavy-flavor searches (right) in the low-mass (top) and high-mass (bottom) scenarios. The expectation for the top squark signal is indicated by the blue dashed line for the low-mass search ($M_{\tilde{t}} = 250$ GeV) and for the high-mass search ($M_{\tilde{t}} = 400$ GeV). The bottom part of each figure shows the difference in each bin between the data and the background estimate divided by the statistical uncertainty associated with the data, with the shaded region indicating the expected distribution in the case of the top squark signal appearing in data. The last bin in each m_{av} distribution also includes all overflow m_{av} events.

as the default background shape as input to the pseudo-experiments.

For each pseudo-experiment, each of the parameterizations is fit to the fluctuated background shape, and the largest value of the fractional difference between the alternate fit result and the default one is calculated for every m_{av} bin. The mean of the resulting distribution is taken as the bin-by-bin uncertainty for each alternate parameterization, and the average of the alternate parameterization uncertainties determines the overall assigned uncertainty. This uncertainty increases with m_{av} from 0.3% to 0.6% in the low-mass search range, and from 0.5% to 30% in the high-mass search range.
7 Results

We set upper limits on the production cross section using a Bayesian formalism with a uniform prior for the cross section. The binned likelihood L can be written as

$$L = \prod_i \frac{\mu_i^{n_i} e^{-\mu_i}}{n_i!},$$

where μ_i is defined as $\mu_i = \alpha N_i(S) + N_i(B)$ and n_i is the measured number of events in the ith bin of m_{av}. Here, $N_i(S)$ is the number of expected events from the signal in the ith m_{av} bin, α is a constant to scale the signal amplitude, and $N_i(B)$ is the number of expected events from background in the ith m_{av} bin. The likelihood is combined with the prior and nuisance parameters, and then marginalized to give the posterior density for the signal cross section. Integrating the posterior density to 0.95 of the total gives the 95% CL limit for the signal cross section. The expected limits on the cross section are estimated with pseudo-experiments generated using background shapes, obtained by signal-plus-background fits to the data. Closure tests are performed where a fixed signal is injected, and these confirm that the presence of signal would not be hidden in the estimated background.

Figure 6 shows the observed and expected 95% CL upper limits on σ, the cross section, and a dotted red line indicating the NLO+NLL predictions for top squark production [32–35], where the top squark mass is equal to m_{av}. The vertical dashed blue line at a top squark mass of 300 GeV indicates the transition from the low- to the high-mass limits, and at this mass point the limits are shown for both analyses. The production of top squarks undergoing RPV decays into light-flavor jets is excluded at 95% CL for top squark masses from 200 to 350 GeV. Top squarks whose decay includes a heavy-flavor jet are excluded for masses between 200 and 385 GeV. We exclude the production of colorons decaying into four jets at 95% CL for masses between 200 and 835 GeV, as seen in Fig. 7.

8 Summary

A search has been performed for pair production of heavy resonances decaying to pairs of jets in four-jet events from proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS detector. The
distribution in the average mass of selected dijet pairs has been investigated for localized disagreements between the data and the background estimate. This method takes advantage of a number of additional optimized kinematic requirements imposed on the dijet pair. No significant deviation is found between the selected events and the expected standard model multijet background. Limits are placed on the production of colorons decaying into four jets with a 100% branching fraction, excluding at 95% confidence level, masses between 200 and 835 GeV. For this model, these results include first limits in the mass ranges of 200–250 GeV and 740–835 GeV, extending previous limits [16] to lower masses by 50 GeV, and to higher masses by 95 GeV. Limits are set on top squark pair production through the λ''_{UDD} coupling to final states with either only light-flavor jets or both light- and heavy-flavor jets with a 100% branching fraction. We exclude at a 95% confidence level top squark production followed by R-parity violating decays to light-flavor jets for top squark masses from 200 to 350 GeV and decays to heavy-flavor jets for masses between 200 and 385 GeV. Both sets of limits are the most stringent such limits to date, and the first from the LHC for this model of R-parity violating top squark decay.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);
References

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Universidade Estadual Paulistaa, Universidade Federal do ABCb, S\~ao Paulo, Brazil
C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

\textbf{Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria}
A. Aleksandrov, V. Genchev2, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

\textbf{University of Sofia, Sofia, Bulgaria}
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

\textbf{Institute of High Energy Physics, Beijing, China}

\textbf{State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China}
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou

\textbf{Universidad de Los Andes, Bogota, Colombia}
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

\textbf{University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia}
N. Godinovic, D. Lelas, D. Polic, I. Puljak

\textbf{University of Split, Faculty of Science, Split, Croatia}
Z. Antunovic, M. Kovac

\textbf{Institute Rudjer Boskovic, Zagreb, Croatia}
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

\textbf{University of Cyprus, Nicosia, Cyprus}
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

\textbf{Charles University, Prague, Czech Republic}
M. Bodlak, M. Finger, M. Finger Jr.8

\textbf{Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt}
Y. Assran9, S. Elgammal10, A. Ellithi Kamel11, A. Radi12,13

\textbf{National Institute of Chemical Physics and Biophysics, Tallinn, Estonia}
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

\textbf{Department of Physics, University of Helsinki, Helsinki, Finland}
P. Eerola, M. Voutilainen

\textbf{Helsinki Institute of Physics, Helsinki, Finland}

\textbf{Lappeenranta University of Technology, Lappeenranta, Finland}
J. Talvitie, T. Tuuva
DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze8

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

RWTH Aachen University, II. Physikalisches Institut A, Aachen, Germany

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

Deutsches Elektronen-Synchrotron, Hamburg, Germany

University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi¹⁸, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsányi, B. Újvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
The CMS Collaboration

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Turin, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kwangju University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakkharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, D.H. Moon, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh
Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
P. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin31, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic32, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

CERN, European Organization for Nuclear Research, Geneva, Switzerland

Paul Scherrer Institut, Villigen, Switzerland

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

Universität Zürich, Zurich, Switzerland

National Central University, Chung-Li, Taiwan

National Taiwan University (NTU), Taipei, Taiwan

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath,

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, San Diego, La Jolla, USA

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers,
The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA

University of Minnesota, Minneapolis, USA

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA

Northwestern University, Evanston, USA

University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA

Princeton University, Princeton, USA

University of Puerto Rico, Mayaguez, USA
E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snoon, S. Tuo, J. Velkovska
University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Ain Shams University, Cairo, Egypt
13: Now at Sultan Qaboos University, Muscat, Oman
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhuna, Matara, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Università degli Studi di Siena, Siena, Italy
26: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
27: Also at Purdue University, West Lafayette, USA
28: Also at Institute for Nuclear Research, Moscow, Russia
29: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
30: Also at National Research Nuclear University "Moscow Engineering Physics Institute" (MEPhI), Moscow, Russia
31: Also at California Institute of Technology, Pasadena, USA
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Cag University, Mersin, Turkey
42: Also at Anadolu University, Eskisehir, Turkey
43: Also at Ozyegin University, Istanbul, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Necmettin Erbakan University, Konya, Turkey
46: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
47: Also at Marmara University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Yildiz Technical University, Istanbul, Turkey
50: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
52: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
53: Also at Argonne National Laboratory, Argonne, USA
54: Also at Erzincan University, Erzincan, Turkey
55: Also at Texas A&M University at Qatar, Doha, Qatar
56: Also at Kyungpook National University, Daegu, Korea