Observation of a New Narrow Axial-Vector Meson $a_1(1420)$

(Compass Collaboration)

1University of Eastern Piedmont, 15100 Alessandria, Italy
2University of Aveiro, Department of Physics, 3810-193 Aveiro, Portugal
3Universität Bochum, Institut für Experimentalphysik, 44780 Bochum, Germany
4Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn, Germany
5Universität Bonn, Physikalisches Institut, 53115 Bonn, Germany
6Institute of Scientific Instruments, AS CR, 61624 Brno, Czech Republic
7Matrivani Institute of Experimental Research & Education, Calcutta-700 030, India
8Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
9Universität Erlangen-Nürnberg, Physikalisches Institut, 91054 Erlangen, Germany
10Universität Freiburg, Physikalisches Institut, 79104 Freiburg, Germany
11CERN, 1211 Geneva 23, Switzerland
12Technical University in Liberec, 46117 Liberec, Czech Republic
13LIP, 1000-149 Lisbon, Portugal
14Universität Mainz, Institut für Kernphysik, 55099 Mainz, Germany
15University of Miyazaki, Miyazaki 889-2192, Japan
16Lebedev Physical Institute, 119991 Moscow, Russia
17Technische Universität München, Physik Department, 85748 Garching, Germany
18University of Nagoya, 464 Nagoya, Japan
19Charles University in Prague, Faculty of Mathematics and Physics, 18000 Prague, Czech Republic
20Czech Technical University in Prague, 16636 Prague, Czech Republic
21State Scientific Center Institute for High Energy Research Center ‘Kurchatov Institute’, 142281 Protvino, Russia

0031-9007/15/115(8)/082001(6) 082001-1 Published by the American Physical Society
One of the great challenges in particle physics is the understanding of how hadronic matter is constructed from its basic building blocks, quarks, and gluons. Although many possibilities are allowed, which all follow the principle of confinement, almost all hadrons observed can be described by the constituent quark model. The known light-meson spectrum is presently interpreted in terms of $q\bar{q}$ quark-model states that are associated with flavor SU(3) multiplets according to their mass and J^{PC} quantum numbers. For some J^{PC} combinations, more states were reported than can be accommodated by SU(3) symmetry. Depending on their coupling to specific production mechanisms and their decay pattern, these states are interpreted as either carrying a strong glueball component, e.g., $f_0(1500)$, as molecular-type excitations, e.g., $f_1(1420)$, or as tetra-quark states. For a detailed review see Ref. [1]. However, their exotic structure is under debate, unlike for states that carry spin-exotic quantum numbers, e.g., $J^{PC} = 1^{-+}$, and, hence, cannot be $q\bar{q}$ states. This is in contrast to the sector of heavy mesons containing c or b quarks, where exotic mesons have clearly been identified, e.g., X, Y, and Z states. In particular, the recent observation of charged Z states, such as $Z_u(3900)^\pm$ and $Z_d(10610)^\pm$, has proven the existence of mesons with exotic structure [2–4]. Already the existence of one system with a wave function and/or quantum numbers requiring an explanation beyond “ordinary” mesons implies the existence of a large number of additional matter states. Unless new principles for the construction of color-neutral hadrons are found, this should hold for all quark-flavor combinations.

In the sector of light mesons, the issue of exotic states remains unresolved. The lowest-mass state discussed in this context is the $f_0(980)$, which contains $n\bar{n}$ ($n = \{u,d\}$) and a dominant $s\bar{s}$ component. It has also been interpreted as a $K\bar{K}$ molecule [5–7]. The $f_1(1420)$ with a width of only 55 MeV/c^2 couples strongly to $K\bar{K}^*$ and was also suggested to be a molecular-type structure [8]. In Ref. [9], the Particle Data Group has tentatively adopted the scenario of $f_1(1420)$ being the SU(3) partner of $f_1(1285)$. In the class of spin-exotic mesons, the $\pi_1(1600)$ is the only meson observed by several experiments in different decay modes. However, the masses quoted and, in particular, the widths vary considerably between different experiments, and values for the width often exceed 400 MeV/c^2. This suggests the existence of dynamical effects similar to the case of $a_1(1260)$. The situation is characterized by individual states without recognizable pattern and, except for $a_0(980)$ and $f_0(980)$, the absence of any observed isospin partners.

In order to search for new exotic mesons, we have analyzed the diffractive reaction $\pi^- + p \to \pi^- \pi^- \pi^+ + p_{ recoil}$ with the focus on waves with quark-model J^{PC} combinations [10]. We have studied the $J^{PC} = 1^{++}$ states...
in order to search for a possible partner of the isosinglet \(f_1(1420) \). Our analysis aims at the charged isospin \(I = 1 \) analogue decaying into \(\pi^- \pi^- \pi^+ \). Although this final state and the mass range of 1 to 2 GeV/\(c^2 \) have already been studied by many experiments, see, e.g., Refs. [11–13], the improvement by almost 2 orders of magnitude in sample size has opened a new avenue for analysis.

The COMPASS experiment [14,15] is located at the M2 beam line of the CERN Super Proton Synchrotron. For this measurement, we used a beam of 190 GeV/c \(\pi^- \) with 96.8% purity, impinging on a 40 cm long liquid-hydrogen target that was surrounded by a recoil-proton detector (RPD). Incoming pions were identified with a Cherenkov counter placed in the beam line at the entrance to the experimental area. The large-acceptance high-precision spectrometer is well suited for investigating high-energy reactions at low to intermediate values of \(t' \), which denotes the reduced squared four-momentum transfer to the target proton with \(t' = |t| - |l|_{\text{min}} \). For this measurement, \(t' \) is chosen to be in the range from 0.1 to 1.0 (GeV/c)^2, where the lower bound is dictated by the acceptance of the RPD and the upper bound by the steep drop of the number of events with increasing \(t' \). Outgoing charged particles are detected by the tracking system and their momenta are determined using two large-aperture magnets.

The data presented in this Letter were recorded in the year 2008. A detailed description of setup, data selection, and analysis scheme can be found in Refs. [16,17]. The trigger is based on a recoil-proton signal in the RPD in coincidence with an incoming beam particle and no signal in the beam-veto counters. We require a production vertex located within the target volume, with one incoming beam-pion track and three outgoing charged particles, compatible with the pion hypothesis based on information from the RICH counter. The sum of the momenta of the outgoing particles is required to be equal to the average beam momentum within two standard deviations, i.e., ±3.78 GeV/c. We require Feynman-\(x \) of the fastest final-state pion to be below 0.9 for rapidity differences between the fast \(\pi^- \) and the slower \(\pi^- \pi^+ \) pair in the range 2.7 to 4.5. This suppresses the small contamination of centrally produced final states, which contribute mainly at higher \(3\pi \) masses. A total of \(46 \times 10^6 \) events was selected in the mass range between 0.5 and 2.5 GeV/c^2.

In order to extract the spectrum of resonances produced in the reaction, we have performed a partial-wave analysis (PWA) that is pursued in two steps. First, we fit the intensity distributions in the 5-dimensional phase space independently in 100 20 MeV/c^2 wide bins of 3\(\pi \) mass \(m_{3\pi} \), each divided into 11 bins of \(t' \). We adopt the notation \(J^{PC}M^\epsilon \) |isobar| \(\pi L \) to define partial waves. Here, \(\epsilon \) denotes the reflectivity and \(M \geq 0 \) the magnitude of the spin projection along the beam axis (see Ref. [18]), while \(L \) is the orbital angular momentum between the isobar and the bachelor pion in the decay of the \(3\pi \) state. We use the isobar model, which for our fits contains 88 waves, i.e., 80 waves with positive and 7 with negative reflectivity as well as one noninterfering wave representing three uncorrelated pions. This set contains all isobars that decay into \(\pi^- \pi^+ \) and has been derived from a larger set with 128 waves by requiring a minimum relative intensity of about \(10^{-4} \). The likelihood fit function is built from two incoherently added terms that correspond to the two values of reflectivity, \(\epsilon = \pm 1 \). Each term coherently sums over all partial-wave amplitudes that belong to the respective value of \(\epsilon \). Details on the fit model, the fitting procedure, and the results are described in Refs. [16,17]. The division of our data set into 11 bins of \(t' \) is motivated by the very different \(t' \) dependences of resonant and nonresonant components [11,16]. In all partial waves studied, the intensity of nonresonant, i.e., Deck-like components [19], drops off much faster with increasing \(t' \) than that of resonances.

The result of this first PWA step reveals a number of well-known resonances with \(J^{PC} = 0^{++}, 2^{++}, 1^{++}, 2^{--}, \) and \(4^{++} \). They are identified by structures in the mass spectra and a mass-dependent phase that is measured against the reference wave \(1^{++}0^+ \rho(770)\pi S \). The \(1^{++}0^+ \rho(980)\pi P \) intensity shows a clear signal slightly above 1.4 GeV/c^2, which cannot be associated with a known \(1^{++} \) state [see data points in Fig. 1(a)]. Rapid phase rotations with respect to known resonances are observed in the signal region, independent of \(t' \) [see points in Figs. 1(d) and 1(e)]. The same feature is observed in the \(\pi^- \pi^0 \pi^0 \) final state [20].

In the second analysis step, we use a resonance model to fit the spin-density matrices resulting from the first analysis step simultaneously in all bins of \(t' \) and in wave-specific ranges in \(m_{3\pi} \). Typically, only subsets of these spin-density matrices are fit simultaneously. In this Letter, we present such a fit using a minimal set of 3 waves, namely, \(2^{++}1^+ \rho(770)\pi D, 4^{++}1^+ \rho(770)\pi G, \) and \(1^{++}0^+ f_0(980)\pi P \). The first two waves contain the known \(a_2(1320) \) and \(a_4(2040) \). These two waves act as interferometers in order to search for structures in \(1^{++}0^+ f_0(980)\pi P \), where no resonances have yet been reported. For this fit, we model the amplitude of each wave by a coherent superposition of a resonant contribution, which is described by a relativistic Breit-Wigner (BW) amplitude and a nonresonant contribution. Hence both components are allowed to interfere. In the \(4^{++} \) and \(1^{++} \) waves, the latter are described by terms of the form \(F(m_{3\pi}) = e^{-c_1 q^2(m_{3\pi})} \), where \(c_1 \) is a fit parameter and \(q \) is the two-body breakup momentum for a particular isobar at the mass \(m_{3\pi} \). For the nonresonant term in the \(2^{++} \) wave, this parametrization is extended to include an explicit \(t' \) dependence. A simple BW amplitude is used for the \(a_4(2040) \) and the \(J^{PC} = 1^{++} \) state, a BW amplitude with mass-dependent width for the \(a_2(1320) \). In the latter, the decay phase space is approximated assuming quasi-two-body decays into 80% \(\rho(770)\pi \) and 20% \(\eta\pi \).
This indicates that the observed structure in the phase motion also relative to the introduction as width of masses may be attributed to nonresonant contributions that are not described by the present model.

The result of this fit is shown as curves in Figs. 1(a) to 1(d), in which the model curves describe the data well. The blue curve in Fig. 1(a) reveals the existence of a new axial-vector state in the 1^{++}, which we introduce as $a_1(1420)$. This wave collects only 0.25% of the total observed intensity. Its resonance interpretation is supported by the observation of a rapid phase variation by about 180° across the peak region with respect to the 4^{++} [see Fig. 1(d)] and 2^{++} reference waves. As illustrated in Fig. 1(e), the $1^{++} f_0(980) \pi P$ wave shows similarly rapid phase motion also relative to the $1^{++} p(770)\pi S$ wave. This indicates that the observed structure in the $f_0(980)\pi$ decay mode is not caused by the high-mass tails of the $a_1(1260)$, which dominates the $p(770)\pi$ wave. Our fit reveals a BW mass for the $a_1(1420)$ of $1414 \text{ MeV}/c^2$ and a width of $153 \text{ MeV}/c^2$. The observed shift of the measured peak position with respect to the resonance position in Fig. 1(a) is due to destructive interference of the BW resonance (blue) and the nonresonant term (green). In this wave, the fit model is chosen to cover the mass range up to $1.6 \text{ GeV}/c^2$. The observed tail of the intensity at higher masses may be attributed to nonresonant contributions that are not described by the present model.

The resonance-model fit is performed simultaneously in all 11 bins of t'. We allow production strengths and phases of resonances and nonresonant contributions to vary with t'. Spectral shapes and BW parameters are assumed to be independent of t'. Figure 1(f) shows the resulting t' spectrum of the production intensity of the BW amplitude that describes the $a_1(1420)$. The BW intensity and that of the nonresonant contribution show a steep, approximately exponential t' dependence. Fits with a single exponential yield the slope parameters. Resonances are typically described by slope parameters $b \approx 8$ to $10 \text{ (GeV}/c)^{-2}$ that are smaller than those of the nonresonant contributions with $b \approx 12$ to $15 \text{ (GeV}/c)^{-2}$ [16]. The new $a_1(1420)$ has a slope parameter of $b \approx 10 \text{ (GeV}/c)^{-2}$ that is similar to those of $a_2(1320)$ and $a_4(2040)$, which supports its resonance interpretation. The fact that the $a_1(1420)$ is produced with nearly constant phase offset relative to the $a_2(1320)$, independent of t', provides further support for this interpretation. As expected, the slope of the nonresonant contribution in the 1^{++} wave is steeper with $b \approx 13 \text{ (GeV}/c)^{-2}$.

The 88 partial-wave set contains three independent contributions for the $\pi \pi S$-wave isobars, namely, the $f_0(980)$ with parameters taken from Ref. [21], a broad...
The interpretation of this new state is still unclear. Quark-model calculations including tetra-quark states predict $nn\bar{n}$ and $nsn\bar{s}$ isovector states at 1381 and 1530 MeV/c^2, respectively [24]. The molecular model for the $f_1(1420)$ proposed in Ref. [8] could possibly be extended to the isovector case. After our first announcement of the $a_1(1420)$ [25], several explanations were proposed [26–29], none of them describing all features of the data. The properties of the $a_1(1420)$ suggest it to be the isospin partner of the $f_1(1420)$. This is supported by its mass value of 1414 MeV/c^2 and by its strong coupling to $f_0(980)$, which is interpretable as a $K\bar{K}$ molecule. The $a_1(1420)$ width of only 153 MeV/c^2 is narrow as compared to most other known isovector states, which typically have widths between 250 and 350 MeV/c^2. The much smaller width of the $f_1(1420)$ of only 54.9 ± 2.6 MeV/c^2 can be explained by its strong coupling to $K\bar{K}^*$ with the corresponding phase space being much smaller than that for $a_1(1420)$ decaying into $f_0(980)\pi$. The $a_1(1420)$ and the $f_1(1420)$ may possibly be the first observed isospin partners for a $\pi K\bar{K}$ molecular-type excitation, which obey isospin symmetry. This interpretation suggests further experimental and theoretical studies of the $\pi K\bar{K}$ final state.

We gratefully acknowledge the support of the CERN management and staff as well as the skills and efforts of the technicians of the collaborating institutions. This work is supported by MEYS (Czech Republic); “HadronPhysics2” Integrating Activity in FP7 (European Union); CEA, P2I, and ANR (France); BMBF, DFG cluster of excellence “Origin and Structure of the Universe”, the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP), IAS-TUM, and the Humboldt foundation (Germany); SAIL (CSR) (India); ISF (Israel); INFN (Italy); MEXT, JSPS, Daiko, and Yamada Foundations (Japan); NRF (Rep. of Korea); NCN (Poland); FCT (Portugal); CERN-RFBR and Presidential Grant NSh-999.2014.2 (Russia).

Deceased.

Corresponding author.
andrea.bressan@cern.ch

Corresponding author.
bgrube@tum.de

Corresponding author.
fabienne.kunne@cea.fr

Also at Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
b Also at Department of Physics, Pusan National University, Busan 609-735, Republic of Korea and at Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA.

c Also at Chubu University, Kasugai, Aichi, 487-8501 Japan.

d Also at KEK, 1-1 Oho, Tsukuba, Ibaraki, 305-0801 Japan.

Present address: Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, 53115 Bonn, Germany.

Also at Moscow of Physics and Technology, Moscow Region, 141700, Russia.

g Present address: RWTH Aachen University, III. Physikalisches Institut, 52056 Aachen, Germany.

h Present address: Uppsala University, Box 516, SE-75120 Uppsala, Sweden.

[10] The C parity refers to the neutral state of the isospin multiplet.

[16] COMPASS Collaboration (to be published).

