The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025.

This work is part of AIDA Work Package 9: Advanced infrastructures for detector R&D.
The Time Structure of Hadronic Showers in Analog and Digital Calorimeters confronted with Simulations
Outline

• Time structure in hadronic showers

• CALICE T3B and FastRPC - Experiments for timing measurements

• The time structure of hadronic showers
 • In tungsten and steel
 • With plastic scintillator and RPC active elements

• Confronting simulations with data

• Summary
Exploring Hadronic Showers in Time

- Hadronic showers have a complex structure - also in time!

Instantaneous Component:
- Detected via energy loss of electrons and positrons in active medium

Delayed Component:
- Neutrons from evaporation and spallation
- Photons, neutrons, protons from nuclear de-excitation following neutron capture
- Momentum transfer to protons in hydrogenous active medium from slow neutrons

Diagram:
- Illustration of the components of a hadronic shower, including charged and electromagnetic components.
Exploring Hadronic Showers in Time

- Hadronic showers have a complex structure - also in time!

 instantaneous, detected via energy loss of electrons and positrons in active medium

 delayed component:
 - neutrons from evaporation and spallation
 - photons, neutrons, protons from nuclear de-excitation following neutron capture
 - momentum transfer to protons in hydrogenous active medium from slow neutrons

 Importance of delayed component strongly depends on target nucleus
 Sensitivity to time structure depends on the choice of active medium
T3B - The Study of the Time Structure of Showers

- The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype
 - 38 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)
T3B - The Study of the Time Structure of Showers

- The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype
 - 38 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm3) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - Record signal over long time window: ~ 2 µs to sample the full shower development
T3B - The Study of the Time Structure of Showers

- The CALICE Scintillator-Tungsten HCAL - A CLIC physics prototype
 - 38 layers with 10 mm Tungsten (93% W, 5% Ni, 2% Cu, density 17.6 g/cm³) absorber
 - Active elements from CALICE AHCAL: 5 mm thick scintillator tiles, read out by SiPMs (no time information available)

- T3B (Tungsten Timing Test Beam)
 - Goal: Measure the time structure of the signal within hadronic showers in a Tungsten calorimeter with scintillator readout
 - Use a (very) small number of scintillator cells, read those out with high time resolution
 - Record signal over long time window: ~ 2 µs to sample the full shower development

⇨ First information on time structure, possibility for comparisons to Geant4, but: no complete “4D” shower reconstruction!
The T3B Setup - Tungsten

- 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

beam axis through cell 0

44.9 cm
The T3B Setup - Tungsten

- 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower

 ![Diagram of T3B Setup](image)

 beam axis through cell 0

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 44.9 cm

Stand-alone system:
- Installed downstream of CALICE WHCAL, depth ~ 5 λ
- Each cell read out with 1.25 GS oscilloscope, 2.4 µs sampling time per event
- Calibration triggers on dark noise between spills

Synchronization with CALICE
- Triggered by CALICE trigger - common analysis possible
The T3B Setup - Steel

• 15 3 x 3 cm² scintillator cells, sampling the radial extent of the shower beam axis through cell 0

Stand-alone system only:
• Installed downstream of CALICE SDHCAL (Glass RPCs between steel absorbers), depth ~ 6 λ
• Identical readout for T3B
• No correlation of T3B and SDHCAL data streams
 • Different DAQ version
 • Data taken during SDHCAL commissioning: Low data rate, insufficient for timing measurements
 ▸ Standalone trigger for T3B
Alternative Readout: Glass RPCs - Tungsten Only

- Provide a direct comparison of scintillator and gaseous readout: FastRPC - A 1 to 1 copy of T3B, but with a glass RPC instead of scintillators
 - identical granularity: 3 x 3 cm2, one strip behind the CALICE WDHCAL
 - identical data acquisition: 2.4 µs acquisition window with 800 ps readout
 - identical analysis strategy - reconstruction of time of first hit

CALICE WDHCAL, \(\sim 5\lambda \)
tungsten & RPC active layers

RPC (produced at ANL)

FastRPC readout board, connected to oscilloscopes
Data Analysis

Cell-wise reconstruction

- With scintillator / SiPM readout:
 - Reconstruction of time of each photon
 - Reconstruct hits by clustering in time - require at least ~ 0.3 MIP equivalents within 9.6 ns
- With RPC readout:
 - Analogous to SiPM readout, but based on waveform integral

Further analysis:

- For robustness: Use only the first hit in each cell in an event - avoids uncertainties from hit separation, afterpulsing, … High granularity ensures multiple real hits are rare (at the %-level)
- Main observable: “Time of first hit” - Timing given by the second reconstructed photon (SiPM) / start of signal waveform (RPC)
The Time Structure: Tungsten vs Steel

- Hadronic showers characterized by a main prompt signal and a long tail

\[f(t) = A_{\text{fast}} e^{-\frac{t}{\tau_{\text{fast}}}} + A_{\text{slow}} e^{-\frac{t}{\tau_{\text{slow}}}} + C \]

- 60 GeV hadrons - tungsten
 \(\tau_{\text{fast}} = 8.7 \text{ ns} \), \(\tau_{\text{slow}} = 480 \text{ ns} \), \(C = 5.5 \times 10^{-6} \)

- 60 GeV hadrons - steel
 \(\tau_{\text{fast}} = 7.7 \text{ ns} \), \(\tau_{\text{slow}} = 76 \text{ ns} \), \(C = 3.1 \times 10^{-6} \)

- 180 GeV muons
 \(C = 1.2 \times 10^{-6} \)

CALICE T3B
The Time Structure: Tungsten vs Steel

- Hadronic showers characterized by a main prompt signal and a long tail

- Late components in tungsten substantially more pronounced than in steel
 - “fast” late component (~ 8 ns - ~ 50 ns) enhanced by a factor of ~ 2.3 in W
 - “slow” late component (> ~ 50 ns) enhanced by a factor of ~ 13 in W
The Impact of the Active Medium: Scintillator vs Gas

- Comparable behavior for prompt component
- Striking difference in intermediate range: ~ 8 ns to 50 ns

Absorber material: Tungsten
The Impact of the Active Medium: Scintillator vs Gas

Comparable behavior for prompt component

Striking difference in intermediate range:
~ 8 ns to 50 ns

- Further quantified:
 Factor 5 - 8 suppression of intermediate component in gaseous detectors: MeV - scale neutrons: High sensitivity of scintillators through elastic scattering on H

Absorber material: Tungsten
Impact of Time Structure on Shower Shape

- In the outer shower regions late hits are more important:
 Neutrons spread far, prompt component concentrated along shower axis
Impact of Time Structure on Shower Shape

- In the outer shower regions late hits are more important: Neutrons spread far, prompt component concentrated along shower axis.

- Effect less pronounced with RPC readout: Reduced sensitivity to MeV-scale neutrons.

![Graph showing the impact of time structure on shower shape](image-url)

The Time Structure of Hadronic Showers
TIPP, Amsterdam, June 2014

Frank Simon (fsimon@mpp.mpg.de)
Timing vs Hit Energy

- Late hits are predominantly of low energy - High energy deposits dominated by electromagnetic subshowers in the prompt part of the cascade
Comparison to Simulations

- In general good agreement of simulations with data for steel - slight underestimation of intermediate late component without HP neutron treatment.
Comparison to Simulations

In general good agreement of simulations with data for steel - slight underestimation of intermediate late component without HP neutron treatment.

HP neutron treatment crucial for tungsten: severe overestimation of very late component by QGSB_BERT.
Comparison to Simulations

- Radial dependence well modelled for steel - within a few 100 ps

GEANT4 9.4p03

60 GeV hadrons - steel
- Data
- QBBC
- QGSP_BERT_HP
- QGSP_BERT

CALICE T3B

Mean Time of First Hit [ns]

Shower Radius [cm]
Comparison to Simulations

- Radial dependence well modelled for steel - within a few 100 ps
- Radial dependence for tungsten needs HP neutron treatment
Summary

• Time structure of hadronic showers highly relevant for calorimetry at future colliders
 • Within CALICE dedicated experiments have been carried out to study it in tungsten and steel with scintillators (T3B) and gaseous detectors (FastRPC)

• In gaseous detectors, the sensitivity to the intermediate time component is reduced in particular the region from a few to a few 10 ns
 • Reduced sensitivity to MeV-scale spallation neutrons due to low hydrogen content of active medium

• The comparison of GEANT4 simulations to the data shows:
 • The time structure in steel is in general quite well described, but profits from high precision neutron models
 • For the simulation of showers in tungsten high precision neutron models are mandatory to reproduce the late components of the shower
 • Simulations to compare to the RPC data in preparation
Backup
The Life of a Pion in the WAHCAL

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

Shower @ 2 to 4 ns

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

- **Shower @ 6 to 8 ns**

 - **CALICE T3B Data**

 - **T = 0**: Activity maximum in layer 39 (rear of calorimeter)

 - Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

Shower @ 30 to 40 ns

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCAL

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
The Life of a Pion in the WAHCal

Shower @ 80 to 100 ns

CALICE T3B Data

T = 0: Activity maximum in layer 39 (rear of calorimeter)

Shown: First hits in each cell only
Time vs Energy of First Hits in T3B

• The “universal” T3B observable: Time of First Hit
 • Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit
The “universal” T3B observable: Time of First Hit

- Multiple hits per tile in one event are rare: < 3% at 30% amplitude of primary hit

- Substantial difference between showers in steel and tungsten: More pronounced late activity in W