CP-violation in B decays

Jack Wimberley
on behalf of the LHCb Collaboration

Department of Physics
University of Maryland, College Park

Phenomenology 2015 Symposium, May 5
The CKM matrix in the Wolfenstein parameterization is

$$\begin{pmatrix}
 1 - \lambda^2/2 & \lambda & A\lambda^3 (\bar{\rho} - i\bar{\eta}) \\
 -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\
 A\lambda^3 (1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1
\end{pmatrix} + \mathcal{O}(\lambda^4)$$

Two CP-violating parameters of interest are

$$\beta = \arg\left[-\frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \right], \quad \beta_s = \arg\left[-\frac{V_{cs} V_{cb}^*}{V_{ts} V_{tb}^*} \right]$$
SM Unitarity

\[(\bar{\rho}, \bar{\eta}) \]

\[\sim \chi^2(-\bar{\rho}, -\bar{\eta}) \]

\[\left| \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \right| \]

\[\left| \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} \right| \]

\[(0, 0) \rightarrow (1, 0) \]

\[\beta = 25.2^\circ \]

\[\beta_s = -1.05^\circ \]
How do you measure this?

\[
\begin{align*}
B & \xrightarrow{V_{cd} V_{cb}^*} f_{CP} \\
& \xrightarrow{(V_{td} V_{tb}^*)^2} \bar{B} \\
& \xrightarrow{(V_{cd} V_{cb}^*)^*} \Rightarrow \phi = 2\beta
\end{align*}
\]

and equivalently for \(B \to B_s\), \(d \to s\), \(\beta \to \beta_s\) [1]

- \textit{CP}-violation in interference for \(b \to c\bar{c}s\) decays
- Experimentally/theoretically convenient “golden modes”
 \[\beta: \ B^0 \to J/\psi K^0_S\]
 \[\beta_s: \ B_s \to J/\psi \phi\]
What do you actually measure?

- Penguins add different phase at $O(\lambda^2)$
- U-spin symmetric processes can constrain $\Delta \phi(s)$
- New physics could introduce new phases in mixing or decay
LHCb Detector
What asymmetry is actually measured?

- The measured CP-asymmetry in events at decay time t is diluted by time resolution and mistagging:

$$A_{\text{raw}}(t) = A_{\text{CP}}(t) \times D_{\text{resolution}} \times D_{\text{tagging}} \sim \frac{S \sin \Delta m t - C \cos \Delta m t}{\cosh \frac{\Delta \Gamma t}{2} + A \Delta \Gamma \sinh \frac{\Delta \Gamma t}{2}} \exp \left(-\frac{1}{2} \Delta m^2 \sigma_t^2 \right)$$

- Modified by production/reconstruction asymmetries
- Likelihood function also must account for
 - Lifetime distributions
 - Lifetime acceptance functions
Incorrectly tagged events dilute asymmetry and hurt precision

Effective reduction in statistical power ϵ_{eff}

Currently at $\sim 3\%$ for B^0 and $3\%–5\%$ for B_s
$B^0 \to J/\psi K_S^0$ analysis

- CP-odd final state
- $A_{CP}(t) = S \sin \Delta mt - C \cos \Delta mt$, where

 $$S = \frac{2 |\lambda_{CP}| \sin \phi}{1 + |\lambda_{CP}|^2}, \quad C = \frac{1 - |\lambda_{CP}|^2}{1 + |\lambda_{CP}|^2}$$

- In the SM, $|\lambda_{CP}| \approx 1$ and so $S = \sin \phi \approx \sin 2\beta$ and $C = 0$
- Knowledge from B factories (via HFAG):

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>C</th>
<th>β (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFAG</td>
<td>0.665 ± 0.024</td>
<td>−0.004 ± 0.015</td>
<td>20.8 ± 0.9</td>
</tr>
<tr>
<td>SM (CKMFitter)</td>
<td>0.771 ± 0.029</td>
<td>0</td>
<td>25.2 ± 1.3</td>
</tr>
</tbody>
</table>
$B^0 \to J/\psi K_S^0$ fit

Figure: Distribution of (a) the reconstructed mass and (b) logarithmic distribution of the decay time of tagged $B^0 \to J/\psi K_S^0$ candidates.
$B^0 \rightarrow J/\psi K^0_S$ results

Figure:
Projections of the fit and sWeight-ed data to $\bar{B} - B$ asymmetry

<table>
<thead>
<tr>
<th>Analysis</th>
<th>S</th>
<th>C</th>
<th>$\rho(S, C)$</th>
<th>$\beta (^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCb</td>
<td>0.731 ± 0.040</td>
<td>-0.038 ± 0.032</td>
<td>0.483</td>
<td>24.7 ± 1.8</td>
</tr>
<tr>
<td>SM (CKMFitter)</td>
<td>0.771 ± 0.029</td>
<td>—</td>
<td>—</td>
<td>25.2 ± 1.3</td>
</tr>
</tbody>
</table>
$B_s \to J/\psi K^+ K^-$ analysis

- $K^+ K^-$ comes from P-wave $\phi + S$-wave (e.g. $f_0(980)$)
 - J/ψ and ϕ have relative orbital angular momentum
 - $CP |\ell\rangle \propto (-1)^{\ell} \Rightarrow CP$-even/odd angular modes
 - Must unfold $3 + 1$ amplitudes $\Rightarrow 10$ angular modes

- Analyzed in bins of $m(K^+ K^-)$
 - Relative phase between P-/S-waves depends on $m(K^+ K^-)$
 - Trend can resolve $\Delta \Gamma \leftrightarrow -\Delta \Gamma$, $\phi_s \leftrightarrow \pi - \phi_s$ ambiguity
 - Previous study confirmed $\Delta \Gamma > 0$ and $\phi_s \sim 0$
Angular modes

where $S = \frac{2|\lambda_{CP}| \sin \phi_s}{1+|\lambda_{CP}|^2}$, $C = \frac{1-|\lambda_{CP}|^2}{1+|\lambda_{CP}|^2}$, and $A_{\Delta \Gamma} = -\frac{2|\lambda_{CP}| \cos \phi_s}{1+|\lambda_{CP}|^2}$
Angular acceptance

- Necessary to understand angular acceptance
- Relevant angles are in CM frames:

\[\cos \theta_K, \cos \theta_\mu, \phi_h \]

![Diagram showing angular acceptance](image)

LHCb simulation

- **Muon \(p_T \) cuts**

\[\theta_K, \theta_\mu, \phi_h \text{ [rad]} \]
$B_s \rightarrow J/\psi K^+ K^-$ fit and results

Figure: CP-even, CP-odd, and S-wave

<table>
<thead>
<tr>
<th>Analysis</th>
<th>ϕ_s (mrad)</th>
<th>β_s (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCb [3]</td>
<td>-58 ± 49</td>
<td>-1.7 ± 1.4</td>
</tr>
<tr>
<td>SM (CKMFitter)</td>
<td>-36.6 ± 1.2</td>
<td>-1.05 ± 0.04</td>
</tr>
</tbody>
</table>
$B_s \rightarrow J/\psi \pi^+ \pi^-$ analysis

- Dominated by CP-odd scalar $f_0 \rightarrow \pi^+ \pi^-$ resonances
 - Small ($\sim 1\%$) D-wave $f_2(1270), f'_2(1525)$ components
 - Possible P-wave ρ contribution $< 1.5\%$ at 95\% C.L.

- Updated measurement does angular analysis
 - As in P- vs. S-wave $K^+ K^-$, relative phase in interference
 - $m(\pi^+ \pi^-)$ modeled for Dalitz-plot formalism [4]

![Graphs showing decay time and angular distributions for $B_s \rightarrow J/\psi \pi^+ \pi^-$](image).
$B_s \rightarrow D^+_s D^-_s$ analysis

- CP-even final state
- D_s is reconstructed in $KK\pi$, $K\pi\pi$, and $\pi\pi\pi$ channels
- BDT used to improve signal-to-background ratio

![Graphs showing $M(D^+_s D^-_s)$ distribution and decay time]

[6, arXiv:1409.4619 (hep-ex)]
HFAG has combined LHCb measurements with CDF, D0, CMS, and ATLAS results:

<table>
<thead>
<tr>
<th>Analysis</th>
<th>ϕ_s (mrad)</th>
<th>β_s ($^\circ$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LHCb $J/\psi K^+ K^-$ [3]</td>
<td>-58 ± 49</td>
<td>-1.7 ± 1.4</td>
</tr>
<tr>
<td>LHCb $J/\psi \pi^+ \pi^-$ [5]</td>
<td>70 ± 68</td>
<td>2.0 ± 1.9</td>
</tr>
<tr>
<td>LHCb $D_s^+ D_s^-$ [6]</td>
<td>20 ± 170</td>
<td>0.6 ± 4.9</td>
</tr>
<tr>
<td>HFAG</td>
<td>-15 ± 35</td>
<td>-0.6 ± 1.1</td>
</tr>
<tr>
<td>SM</td>
<td>-36.6</td>
<td>-1.05</td>
</tr>
</tbody>
</table>
ϕ_s Analyses

$B_s \rightarrow \phi\phi$ analysis

ϕ_s from $b \rightarrow c\bar{c}s$ and $b \rightarrow s\bar{s}s$ - is this the same angle?

- In SM, same (to $\mathcal{O}(\lambda^2)$) as tree-level $b \rightarrow c\bar{c}s$ transitions

- Penguin-dominated $b \rightarrow s\bar{s}s$ process is more sensitive to NP

- Rather than combining measurements . . .

- . . . better to keep separate and look for evidence of NP
$B_s \rightarrow \phi \phi$ fit and results

$B_s \rightarrow \phi \phi$ fit and results

Table:

<table>
<thead>
<tr>
<th>Mode</th>
<th>ϕ_s (mrad)</th>
<th>β_s (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_s \rightarrow \phi \phi$ [7]</td>
<td>-170 ± 153</td>
<td>4.9 ± 4.4</td>
</tr>
<tr>
<td>$b \rightarrow c \bar{c}s$ average (HFAG)</td>
<td>-15 ± 35</td>
<td>0.6 ± 1.1</td>
</tr>
</tbody>
</table>

Figure: CP-even, CP-odd, and S-wave
Updated LHCb measurement of sin 2\(\beta\) with full 3 fb\(^{-1}\) is consistent with \(B\)-factory measurement and with the SM

New and updated measurements of \(\phi_s\) in the \(B_s \to J/\psi\phi, J/\psi\pi\pi\), and \(D_sD_s\) channels improve precision, remain compatible with the SM

Updated measurement of \(\phi_s\) in penguin-dominated \(B_s \to \phi\phi\) channel shows no deviation
Backup slides
Where do phases come from?

\[e^{i\beta(s)} = -\frac{V_{cd(s)} V_{cb}^*}{V_{td(s)} V_{tb}^*} \]

\[b \rightarrow c\bar{c}s \quad b \rightarrow c\bar{d} - \text{difficult} \]

\[b \rightarrow c\bar{c}s \times K^0/\bar{K}^0 \text{ mixing} \]

\[B(s)/\bar{B}(s) \text{ mixing} \]
Constraining penguin contributions

- Strong force invariant under “U-spin symmetry” $s \leftrightarrow d$
- Exchange spectator $s \leftrightarrow d$ and $b \rightarrow c\bar{c}s \leftrightarrow b \rightarrow c\bar{c}d$
 \[
 \beta: \quad B \rightarrow J/\psi K_S^0 \leftrightarrow B_s \rightarrow J/\psi K_S^0 \\
 \beta_s: \quad B_s \rightarrow J/\psi \pi\pi \leftrightarrow B_d \rightarrow J/\psi \pi\pi
 \]
- Originally envisioned as a way to measure γ [8, 9]
- Instead, inputing γ sets a constraint on $\Delta\phi_x$:
 - $B_s \rightarrow J/\psi K_S^0$ has too high systematics to constrain $\Delta\phi_d$ [10]
 - $B^0 \rightarrow J/\psi \pi^+\pi^-$ constrains $\Delta\phi_s$ to $[-1.05^\circ, +1.18^\circ]$ [11]
Flavor tagging overview

- Incorrectly tagged events dilute asymmetry and hurt precision
 - A diluted by a factor $\langle D_{\text{tagging}} \rangle$, where $D_{\text{tagging}} = p(R) - p(W)$
 - Statistical power reduced by $\langle D_{\text{tagging}}^2 \rangle$
- Fraction of events tagged ϵ also reduces statistical power
- Effective tagging efficiency:
 $$\epsilon_{\text{eff}} = \epsilon \langle D^2 \rangle$$
Flavor tagging overview (cont’d)

- Import FT figures of merit:
 - The tagging efficiency (or rate) $\epsilon = \frac{N_{\text{tagged}}}{N_{\text{signal}}}$
 - The ev. by ev. mistag probability η
 - The ev. by ev. dilution $D_{\text{tagging}} = 1 - 2\eta$
 - The tagging power (or effective tagging efficiency) $\epsilon_{\text{eff}} = \epsilon \langle D^2 \rangle$

- Taggers are tuned (trained, optimized) to maximize ϵ_{eff}

- Taggers are calibrated to ensure that

 $$\omega(\eta) = \frac{N_{\text{wrong},\eta}}{N_{\text{tagged},\eta}} = \eta$$
Evolution of $\sin 2\beta$ sensitivity ($J/\psi K^0_S$)

<table>
<thead>
<tr>
<th></th>
<th>Nov '12</th>
<th>Mar. '15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>1.0 fb$^{-1}$</td>
<td>3.0 fb$^{-1}$</td>
</tr>
<tr>
<td>Tagging Power</td>
<td>2.38%</td>
<td>3.02%</td>
</tr>
<tr>
<td>Total</td>
<td>1.0x</td>
<td>3.8x</td>
</tr>
<tr>
<td>Error</td>
<td>0.07</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Evolution of ϕ_s sensitivity ($J/\psi\phi$)

<table>
<thead>
<tr>
<th></th>
<th>Mar. '12</th>
<th>June '13</th>
<th>Jan. '15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>0.37 fb$^{-1}$</td>
<td>1.0 fb$^{-1}$</td>
<td>3.0 fb$^{-1}$</td>
</tr>
<tr>
<td>Tagging Power</td>
<td>1.91%</td>
<td>3.13%</td>
<td>3.73%</td>
</tr>
<tr>
<td>Total</td>
<td>1.0x</td>
<td>4.4x</td>
<td>15.8x</td>
</tr>
<tr>
<td>Error</td>
<td>0.18</td>
<td>0.09</td>
<td>0.049</td>
</tr>
</tbody>
</table>
Evolution of ϕ_s sensitivity ($J/\psi \pi^+ \pi^-$)

<table>
<thead>
<tr>
<th></th>
<th>Apr. '12</th>
<th>June '13</th>
<th>May '14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>1.0 fb$^{-1}$</td>
<td>1.0 fb$^{-1}$</td>
<td>3.0 fb$^{-1}$</td>
</tr>
<tr>
<td>Tagging Power</td>
<td>2.43%</td>
<td>3.37%</td>
<td>3.89%</td>
</tr>
<tr>
<td>Total</td>
<td>1.0x</td>
<td>1.4x</td>
<td>4.8x</td>
</tr>
<tr>
<td>Error</td>
<td>0.175</td>
<td>0.165</td>
<td>0.068</td>
</tr>
</tbody>
</table>
Lifetime acceptance example ($B_s \rightarrow J/\psi\phi$)

- Lifetime acceptance of biased trigger determined with data
- Orthogonal sample selected via an independent trigger
$B_s \rightarrow J/\psi \pi \pi$ mass spectra

- Figure (a): Combination/ (20 MeV) vs $m(\pi^+\pi^-)$ [GeV] for LHCb.
- Figure (b): Combination/ (5 MeV) vs $m(J/\psi \pi^+\pi^-)$ [MeV] for LHCb.
$B_s \to \phi\phi$ analysis

- Most easily measured in $(K^+K^-)(K^+K^-)$ final state
 - Either K^+K^- can also come from S-wave resonance
 - $PP + PS + SS \Rightarrow 3 + 1 + 1$ amplitudes $\Rightarrow 15$ angular modes
- Binning in $m(K^+K^-)$ employed again
- BDT used to improve signal-to-background ratio
 - Uses kaon isolation information
 - Peaking backgrounds to contend with
References I

