Novel Real-time Alignment and Calibration of the LHCb Detector in Run II
Mark Tobin and Zhirui Xu, on behalf of the LHCb collaboration
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Running Conditions from Run I to Run II
- Higher energy: $\sqrt{s} = 7$ TeV \rightarrow 13 TeV.
- 15% increase in inelastic collision rate.
- 20% increase of multiplicity per collision.
- 80% increase of v_T and v_x.
- Reduced bunch spacing: 50 ns \rightarrow 25 ns.
- Similar instantaneouos luminosities: 4×10^{34} cm$^{-2}$ s$^{-1}$.

LHCb Detector

LHCb Trigger Schemes

Advantages of Real-time Align. and Calib.
- Improves trigger selection.
- Minimises the difference between online and offline performances.
- Ensures the stability of the alignment quality.
- Enables physics analyses directly on the trigger output.

Degrees of Freedom for Alignment
- 3 translations and 3 rotations for each element.
- Number of elements to be aligned:
 - VELO: 86
 - TT: 135
 - IT: 64
 - OT: 496
- Constrained to nominal, survey or previously aligned position.

Alignment and Calibration Impact on Physics Performance
- The spatial alignment of the detector and the accurate calibration of its subcomponents are essential elements to achieve the best physics performance.
- An exclusive selection using hadron particle identification criteria relies on the complete calibration of the RICH detectors.

OT and RICH Calibration Strategy in Run II
- Online analysis task running on single CPU.
- New parameters evaluated from fits to monitoring histograms.

Global Time Alignment for OT
- Drift-time t_{D} measurement: $t_{D} = \phi_{0} + \phi_{prop} + \phi_{reset}$, with $\phi_{0} = \phi_{collission} - \phi_{clock} + \phi_{initial}$.
- A single condition which accounts for the time alignment between the collision time and the LHCb clock.
- Run the job for every run and update the constant if above a certain threshold.

RICH Calibration
- Refractive index calibration (1040 constants): Depends on the gas mixture, temperature and pressure.
- Fits on the Cherenkov angle differences $\Delta \phi$.
- Corrections calculated and updated every run.
- HPD calibration (2 constants):
 - Electrostatic effect (probably) due to switching off the HV for every injection.
 - Fit a circle to the HPD image.
- Corrections calculated and updated every run.

CALO Calibration
- A relative calibration online using occupancy method.
 - Occupancy for each cell defined as $O(x,y,b) = \sum_{i,j} F(x,i,y,j)/\sum_{i,j} F(x,y,i,j)$.
 - Ratio of occupancies proportional to changes in hardware characteristics.
 - HV adjusted on a per fill basis based on the gain changes calculated from the occupancy profiles.

References

FRONTIER DETECTORS FOR FRONTIER PHYSICS - 13th Pisa Meeting on Advanced Detectors
Contact: zhirui.xu@epfl.ch