Time-integrated CP violation in Charm decays

Stefano Perazzini
INFN & Università di Bologna
On behalf of LHCb collaboration
(including results also from CLEO-c, Belle and CDF)
Covered experiments

- Very large sample of HF hadrons in pp collisions at LHC:
 - $\sigma_{c\bar{c}} = 1419 \pm 134 \mu\text{b} @ 7 \text{ TeV}$ [Nucl. Phys. B871, 1-20]
 - 1 fb$^{-1}$ @ 7 TeV + 2 fb$^{-1}$ @ 8 TeV
 - ~ 2 kHz of charm events stored on disk

- Exploiting final statistics collected after 10 years at TeVatron
 - general purpose experiment
 - $\sim 10^{13}$ pp collisions @ 1.96 TeV
 - $\sim 1\%$ of collisions yields a D meson

- Collected e^+e^- asymmetric collisions at KEKB:
 - More than 1 ab$^{-1}$ of integrated luminosity at various Y resonances
 - $\sigma_{c\bar{c}} \approx 1.3 \text{ nb} @ Y(4S)$ resonance

- Collected e^+e^- collisions at $\Psi(3770)$ resonance:
 - Full sample is 818 pb$^{-1}$
 - very clean environment
Experimental observable

- Quintessential observable in time-integrated CPV is

\[A_{\text{RAW}} = \frac{N(D \to f) - N(\bar{D} \to \bar{f})}{N(D \to f) + N(\bar{D} \to \bar{f})} \]

- \(A_{\text{RAW}} \) is related to CPV parameters by

\[A_{\text{RAW}} \approx A_{\text{CP}} + A_P + A_D + A_T \]

- Asymmetry in determination of D flavour

\[A_{\text{CP}} = \frac{\Gamma(D \to f) - \Gamma(D \to \bar{f})}{\Gamma(D \to f) + \Gamma(D \to \bar{f})} \]

CP asymmetry related to CKM parameters

Different production rates between D and \(\bar{D} \)

Different detection efficiencies between f and \(\bar{f} \)

- Experimental issues
 - determine the corrections to \(A_{\text{RAW}} \)
 - general strategy is to measure \(A_{\text{RAW}} \) in Cabibbo-favoured decays where CPV is very unlikely
Tag asymmetry

- Correction peculiar of neutral D\(^0\) mesons
- Two strategies:
 - D\(^*\)-prompt:
 - reconstruct D\(^*+\)→D\(^0\)\(\pi^+_s\) decays
 - \(\pi^+_s\) charge denotes D\(^0\) flavour
 - \(A_T\) comes from \(\pi^+_s\) detection asymmetry
 - used by all the experiments
 - Semi-leptonic:
 - reconstruct B→D\(^0\)\(\mu^\pm X\) decays
 - \(\mu^\pm\) charge denotes D\(^0\) flavour
 - \(A_T\) comes from m detection asymmetry
 - completely independent of the D\(^*\)-prompt sample
 - peculiar of LHCb
Production asymmetry

• Depends on several factors
• Tag of D^0:
 – D^*-prompt $\rightarrow A_P$ of D^*
 – Semi-leptonic $\rightarrow A_P$ of B mesons
• Environment
 – p-p collisions:
 • initial imbalance between q and \bar{q}
 • different hadronization probabilities for D and \bar{D}
 • may depend on kinematic
 – p-\bar{p} collisions:
 • expect A_P to vary as a function of η
 • D (\bar{D}) production may be favourite in the direction of \bar{p} (p)
 – e^+-e^- collisions:
 • function of CMS polar angle
 \[A_P \equiv A_{FB} \left(\cos \theta^* \right) \]
 • can be easily disentangled
 \[
 A_{CP} = \frac{A_{raw}^{cor}(\cos \theta^*) + A_{raw}^{cor}(-\cos \theta^*)}{2} \\
 A_{FB} = \frac{A_{raw}^{cor}(\cos \theta^*) - A_{raw}^{cor}(-\cos \theta^*)}{2}
 \]

$A_{FB} \equiv A_{FB} \cos \theta^*$

arXiv:1212.1975
Detection asymmetry

- Charge conjugate final states can have different detection efficiency
- Asymmetry in particle interaction with material
 - e.g.: K^- has larger inelastic cross-section with detector material with respect to K^+
- Asymmetry in detector response
 - e.g.: different efficiency with respect to bending direction of charged tracks
 - regularly revert magnet polarity

Data from K.A. Olive et al. (PDG), CPC 38 (2014) 090001

$A_{\mu}/\Lambda_{\mu}[\%]$ vs. Kaon p [GeV/c]
CP asymmetries in D^0 and D^{\pm} decays

PRD 89 (2014) 072002
CP asymmetries in D^0 and D^\pm decays

[PRD 89 (2014) 072002]

- D-\bar{D} pairs produced in the decay of $\Psi(3770)$ resonance:
 - very clean environment
- Detection asymmetries are estimated using partially reconstruction of D decays
 - fits of missing mass in regions of the kinematic of missing track

No evidence for CPV
Search for CP violation in the decay
$D^+ \rightarrow \pi^- \pi^+ \pi^+$

PLB 728 (2014) 585-595
Search for CP violation in the decay $D^+ \rightarrow \pi^- \pi^+ \pi^+$

(PLB 728 (2014) 585-595)

- Model independent Dalitz Plot analysis to look for local CP asymmetries
 - define a test statistic
 - binned method
 \[S_{CP}^i = \frac{N_i^+ - \alpha N_i^-}{\sqrt{\alpha (N_i^+ + N_i^-)}} \]
 \[\alpha = \frac{N^+}{N^-} \]
 - unbinned method (k-nearest neighbour, kNN)
 \[T = \frac{1}{n_k(N_+ + N_-)} \sum_{i=1}^{N_+ + N_-} \sum_{k=1}^{n_k} I(i, k) \]
 - both S_{CP} and T have well defined distributions in the no-CPV hypothesis
 \[f(S_{CP}) = G(0,1) \]
 \[f(T) = G(\mu_T, \sigma_T) \]

$1 \text{ fb}^{-1} @ 7 \text{ TeV}$

- parameter used to remove global asymmetries (A_p, A_d or A_{CP})

- computed in different regions of DP to take into account resonance structure

$\sim 3M D^\pm$
Search for CP violation in the decay $D^+ \rightarrow \pi^- \pi^+ \pi^+$
(PLB 728 (2014) 585-595)

Binned method
- p-value for no-CPV always > 50% for different binning schemes

Unbinned method
- p-value for no-CPV always > 30% in different regions of DP

No evidence of CP violation is observed
Search for CP violation in $D^0 \to \pi^- \pi^+ \pi^0$ decays with the energy test

Search for CP violation in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ decays with the energy test

• Model independent Dalitz Plot analysis to look for CPV
 – method is unbinned and is based on test statistic $T = \sum_i (T_i + \bar{T}_i)$

 \begin{align*}
 T_i &= \frac{1}{2n(n-1)} \sum_{j \neq i}^n \psi_{ij} - \frac{1}{2n^2} \sum_j^n \psi_{ij}, \rightarrow \text{contribute of a single } D^0 \\
 \bar{T}_i &= \frac{1}{2n(n-1)} \sum_{j \neq i}^n \bar{\psi}_{ij} - \frac{1}{2n^2} \sum_j^n \bar{\psi}_{ij}, \rightarrow \text{contribute of a single } \bar{D}^0
 \end{align*}

Ψ_{ij}: gaussian metric decreasing with ij-distance in the DP

\[
T = 0 \rightarrow \text{no-CPV} \\
T > 0 \rightarrow \text{CPV}
\]

Examples from simulation

introducing 2% direct CPV in ρ^+ resonance

introducing 1° CPV phase in ρ^+ resonance
Search for CP violation in $D^0 \rightarrow \pi^- \pi^+ \pi^0$ decays with the energy test

- D^0 flavour determined using D^*-prompt
- Two different reconstruction of π^0
 - merged: worse mass resolution but larger p_T
 - resolved: better mass resolution but lower p_T
- Reference distribution of T for no-CPV case is obtained using permutation with randomly assigned flavour
 - p-value is the fraction of permutations above nominal T value

Consistent with no-CPV

p-value = $(2.6 \pm 0.5)\%$
Search for direct CPV in $D^+ \rightarrow K_S^0 K^+$ and $D_s^+ \rightarrow K_S^0 \pi^+$ decays

JHEP 10 (2014) 025
Search for direct CPV in $D_{(s)}^+ \rightarrow K_S^0 h^+$

$[\text{JHEP} 10 (2014) 025]$

• CPV observable is

$$A_{\text{meas}}^{D_{(s)}^\pm \rightarrow K_S^0 h^\pm} \approx A_{CP}^{D_{(s)}^\pm \rightarrow K_S^0 h^\pm} + A_{\text{prod}}^{D_{(s)}^\pm} + A_{\text{det}}^{h^\pm} + A_{K^0 / \bar{K}^0}$$

• Two sources of asymmetry
 - interaction asymmetry of K^0 / \bar{K}^0
 - presence of mixing and CPV in the $K^0 - \bar{K}^0$ system

$$A_{K / \bar{K}} = (+0.07 \pm 0.02)\%$$

• Assuming negligible CPV in CF decays

$$A_{CP}^{D_{(s)}^\pm \rightarrow K_S^0 \pi^\pm} = A_{\text{meas}}^{D_{(s)}^\pm \rightarrow K_S^0 \pi^\pm} - A_{\text{meas}}^{D_{s}^\pm \rightarrow \phi \pi^+} - A_{K^0}$$

$$A_{CP}^{D_{(s)}^\pm \rightarrow K_S^0 K^\pm} = \left[A_{\text{meas}}^{D_{(s)}^\pm \rightarrow K_S^0 K^\pm} - A_{\text{meas}}^{D_{s}^\pm \rightarrow K_S^0 K^\pm} \right] - \left[A_{\text{meas}}^{D_{(s)}^\pm \rightarrow K_S^0 \pi^\pm} - A_{\text{meas}}^{D_{s}^\pm \rightarrow \pi^+} \right] - A_{K^0}$$

Detection and production asymmetries cancel in the difference of raw asymmetries
Search for direct CPV in $D_{(s)}^{+} \rightarrow K_{S}^{0} h^{+}$
(JHEP 10 (2014) 025)

- Sample divided by charge and magnet polarity
- Simultaneous fit of all subsamples
- p_T and η distributions of D in the various channels are equalized using a weighting procedure

\[A_{CP}^{D^{\pm} \rightarrow K_{S}^{0} K^{\pm}} = (+0.03 \pm 0.17 \pm 0.14)\% \]
\[A_{CP}^{D_{s}^{\pm} \rightarrow K_{S}^{0} \pi^{\pm}} = (+0.38 \pm 0.46 \pm 0.17)\% \]

1 fb$^{-1}$ @ 7 TeV + 2 fb$^{-1}$ @ 8 TeV

No evidence of CPV
Search for CP Violation in $D^0 \rightarrow \pi^0 \pi^0$
and $D^0 \rightarrow K_S^0 \pi^0$ decays

[Belle [PRL 112 (2014) 211601]]
Search for CP Violation in $D^0 \rightarrow \pi^0 \pi^0$ and $D^0 \rightarrow K_S^0 \pi^0$ decays

[PRL 112 (2014) 211601]

- Initial flavour of the D^0 tagged with D^*-prompt
 - introduce detection asymmetry of π^+_S
 - studied using tagged and untagged samples of $D^0 \rightarrow K \pi^+$ decays as a function of p_T and $\cos \theta$ of π^+_S

- A_{FB} can be subtracted thanks to its dependence on $\cos \theta^*$

$$A_{CP} = \frac{A_{\text{raw}}^{\cos \theta^*} + A_{\text{raw}}^{-\cos \theta^*}}{2}$$

$$A_{FB} = \frac{A_{\text{raw}}^{\cos \theta^*} - A_{\text{raw}}^{-\cos \theta^*}}{2}$$

- For $D^0 \rightarrow K_S^0 \pi^0$ decays need to take into account
 - K^0/\bar{K}^0 interaction asymmetry: $A_{K/\bar{K}} = -0.11\%$ [PRD 84, 111501 (2011)]
 - CPV in $K^0-\bar{K}^0$ mixing: $(-0.339 \pm 0.007)\%$ [PRL 109, 021601 (2012); 109, 119903(E) (2012)]
Search for CP Violation in $D^0 \rightarrow \pi^0\pi^0$ and $D^0 \rightarrow K_S^0\pi^0$ decays

[PRl 112 (2014) 211601]

- Using a luminosity of 996 fb$^{-1}$
 - $\sim 345k \ D^0 \rightarrow \pi^0\pi^0$
 - $\sim 470k \ D^0 \rightarrow K_S^0\pi^0$

- In order to take into account all the corrections to A_{RAW} fits are performed in bins of $(\cos\theta^*, p_T, \cos\theta) \rightarrow 10 \times 7 \times 8$

$$A_{CP}^{\pi^0\pi^0} = (-0.03 \pm 0.64 \pm 0.10)\%$$
$$A_{CP}^{K_S^0\pi^0} = (-0.21 \pm 0.16 \pm 0.07)\%$$

Correcting for K^0-mixing
$$A_{CP}^{K_S^0\pi^0} = (+0.12 \pm 0.16 \pm 0.07)\%$$

No evidence for CPV
Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays

JHEP 07 (2014) 041
Measurement of CP asymmetry in \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^-\pi^+ \) decays

[JHEP 07 (2014) 041]

- Use semi-leptonic B decays to tag \(D^0 \) flavour
 - reconstruct \(B \rightarrow D^0 \mu^\pm X \) decays
 - reconstruct \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^-\pi^+ \)
 - corrections to \(A_{RAW} \) are \(A_P(B) \) and \(A_D(\mu) \)
- Measuring \(\Delta A_{CP} \) corrections cancel in the difference:
 \[
 \Delta A_{CP} = A_{RAW}(K^+K^-) - A_{RAW}(\pi^+\pi^-) = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)
 \]
 - re-weight of events is used to equalize kinematical distributions
 - sample is separated by magnet polarity to further check removal of corrections
- Experimental challenge is to measure single \(A_{CP} \):
 - need to determine corrections
 - help from CF decays where CPV \(\approx 0 \)
Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays

$A_{RAW}(K^+ K^-) = A_{CP}(K^+ K^-) + A_P(B) + A_D(\mu)$

$A_{CP}(K^- \pi^+) + A_P(B) + A_D(\mu) + A_D(K^- \pi^+) = A_{RAW}(K^- \pi^+)$

$cM(K^- \pi^+) [\text{MeV}/c^2]$
Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays

$$A_{RAW}(K^+ K^-) = A_{CP}(K^+ K^-) + A_P(B) + A_D(\mu)$$
$$A_{CP}(K^- \pi^+) + A_P(B) + A_D(\mu) + A_D(K^- \pi^+) = A_{RAW}(K^- \pi^+)$$

$$A_{RAW}(D^+ \rightarrow K^- \pi^+ \pi^+) = A_{CP}(D^+ \rightarrow K^- \pi^+ \pi^+) + A_D(K^- \pi^+) + A_P(D^+) + A_D(\pi^+)$$

(c) $D^0 \rightarrow K^- \pi^+$ from B ~9M

(d) Prompt $D^+ \rightarrow K^- \pi^+ \pi^+$ ~40M
Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays

$$A_{\text{RAW}}(K^+ K^-) = A_{\text{CP}}(K^+ K^-) + A_P(B) + A_D(\mu)$$

$$A_{\text{CP}}(K^- \pi^+) + A_P(B) + A_D(\mu) + A_D(K^- \pi^+) = A_{\text{RAW}}(K^- \pi^+)$$

$$A_{\text{RAW}}(D^+ \rightarrow K^- \pi^+ \pi^+) = A_{\text{CP}}(D^+ \rightarrow K^- \pi^+ \pi^+) + A_D(K^- \pi^+) + A_P(D^+) + A_D(\pi^+)$$

$$A(K_S^0) + A_{\text{CP}}(D^+ \rightarrow K_S^0 \pi^+) + A_P(D^+) + A_D(\pi^+) = A_{\text{RAW}}(D^+ \rightarrow K_S^0 \pi^+)$$

$$A_{\text{CP}}(K^- K^+) = A_{\text{raw}}(K^- K^+) - A_{\text{raw}}(K^- \pi^+) + A_D(K^- \pi^+)$$
Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow \pi^- \pi^+$ decays

Ignoring contribution from indirect CPV

\[A_{CP}(K^- K^+) = (-0.06 \pm 0.15 \text{ (stat)} \pm 0.10 \text{ (syst)})\% \]
\[A_{CP}(\pi^- \pi^+) = (-0.20 \pm 0.19 \text{ (stat)} \pm 0.10 \text{ (syst)})\% \]
Direct and indirect CPV in ΔA_{CP}

- In D^0 decays one should take into account indirect CPV coming from mixing and interference between mixing and decay
 - ΔA_{CP} does not measure pure direct CPV
 \[
 \Delta A_{CP} \approx \Delta a_{CP}^{dir} - \frac{\Delta \langle t \rangle}{\tau} A_{\tau}
 \]
 \[
 A_{\tau} = \frac{\tau(D^0 \to h^+h^-) - \tau(D^0 \to h^+h^-)}{\tau(D^0 \to h^+h^-) + \tau(D^0 \to h^+h^-)}
 \]

- Two recent measurements of A_{Γ}:
 - LHCb [JHEP 04 (2015) 043]:
 - use of D^0 from semi-leptonic B decays
 - CDF [PRD 90 (2014) 111103]:
 - use of D^0 tagged with D^*-prompt
 - Same technique
 - measure A_{RAW} in bins of t/τ
 \[
 A_{\tau}^{CP}(t) \approx A_0 - A_{\tau} \frac{t}{\tau}
 \]
 - A_0 contains A_D, A_P and A_{CP}^{dir} → no effect on the determination of A_{τ}
 - independence of A_0 from decay time is controlled using CF $D^0 \to K^-\pi^+$ decays
Measurements of A_{Γ}

9.7 fb^{-1}

$D^0 \rightarrow K^+ K^-$ from D^* ~1.2M

$D^0 \rightarrow \pi^+ \pi^+$ from D^* ~0.6M

$A_{\Gamma}(K^+ K^-) = (-0.19 \pm 0.15 \text{(stat)} \pm 0.04 \text{(syst)})\%$

$A_{\Gamma}(\pi^+ \pi^-) = (-0.01 \pm 0.18 \text{(stat)} \pm 0.03 \text{(syst)})\%$

No evidence of CPV
Measurements of A_Γ

$A_\Gamma(K^-K^+) = (-0.134 \pm 0.077^{+0.026}_{-0.034})\%$

$A_\Gamma(\pi^-\pi^+) = (-0.092 \pm 0.145^{+0.025}_{-0.033})\%$

No evidence of CPV
Direct and indirect CPV

Data are consistent with no-CPV at 1.8% CL
Conclusions

• Several measurements of time-integrated CPV in charm decays have been presented
 – model independent search for CPV in Dalitz Plot of multibody D decays
 • $D^\pm \rightarrow \pi^-\pi^0\pi^+$, $D^0 \rightarrow \pi^-\pi^+\pi^0$
 • model-dependent measurements will be the next step to extract all the information from resonance structure
 – Measurements of CPV asymmetries in several D^0 and D^\pm decays
 • D^0 and D^\pm to several modes including π^0 and K_S^0
 • $D^+_S \rightarrow K_S^0\pi^\pm$, $D^- \rightarrow K_S^0K^\pm$
 • $D^0 \rightarrow \pi^0\pi^0$ and $D^0 \rightarrow K_S^0\pi^0$
 • $D^0 \rightarrow K^-K^+$ and $D^0 \rightarrow \pi^-\pi^+$
 • Measurements entered the regime of $O(10^{-3})$ precision
Conclusions

• No evidence of CPV yet...

• More results will arrive in the near future
 – LHCb still have to exploit the full potential of Run1
 – more data will come from Run2 of LHC → LHCb
 trigger rate will double
 – Belle II will start to take data soon
 – for longer term prospects see Umberto Marconi’s
 and Matt Barrett’s talks on Friday