Results on J/ψ and $\psi(2S)$ in p-Pb Collisions at 5.02 TeV with ATLAS

Ryan Mackenzie White, for the Atlas Collaboration

European Physical Society Conference on High Energy Physics 2015

University of Vienna
July 2015
Overview

Motivation

Analysis and Fit Method

J/ψ Analysis and Results

J/ψ and $\psi(2S)$ Analysis and Results

Conclusions

Backup
Motivation

Study fundamental QCD processes in nuclear medium at TeV scale.

Cold Nuclear medium effects as Heavy Ion baseline

- Final state effects due to hot matter not expected in p-A collisions but suppression observed.

Numerous insights

- J/ψ Production Mechanisms
- Saturation scale in QCD
- Medium-induced gluon radiation
- Shadowing and other modifications of the gluon PDFs
- Absorption of qqbar pairs
- Ion-direction observables vs. proton directions observables
Analysis Method

Reconstruct di-muon invariant mass $2.5 \ (2.6) \ GeV < m(\mu\mu) < 3.5 \ (4.1)$

Trigger
- L1 Trigger: Single MU0
- High-Level Trigger (no L1 seed): Full-scan Muon spectrometer 2 muons $> 2 \ GeV$

Two (almost) independent analyses
- June 2015 J/ψ and ψ(2S) - ATLAS-CONF-2015-023

Measurement of prompt and non-prompt (b-quarks) fraction of J/ψ and ψ(2S)
Kinematic range: $8.5 \ GeV < p_T < 30 \ GeV$, $|y^*| < 1.94 \ (1.5)$

Perform weighted simultaneous 2D unbinned maximum likelihood fit
- Invariant di-muon mass and lifetime
- Event weights: Trigger and reconstruction efficiency; acceptance
- Parameterise signal and background, non-prompt fraction
Comparison of J/ψ Analyses

Common elements
- Same pPb data sample, same triggers, same secondary di-muon vertex fitting
- Same muon selection criteria and reconstruction efficiency corrections
- Same version of J/ψ acceptance map

Elements that are different
- Included ψ(2S) in fit model; fit model was kept as similar as possible to 7 TeV and 8 TeV pp analyses to reduce interpolation uncertainties.
- Included 2.76 TeV pp data for calculation of R_{pPb}
- Finer binned high-level trigger efficiency
- Centrality dependence was studied using several centrality estimators
Fit Method

Simultaneous 2D unbinned ML fit to dimuon invariant mass and pseudo proper time

\[\tau = \frac{L_{xx} m_{\mu\mu}}{p_{T}^\mu\mu} \]

L_{xx} = projection of decay length on the transverse plane

PDF\((m, \tau) = \sum_{i=1}^{7} \kappa_{i} f_{i}(m) \cdot h_{i}(\tau) \otimes g(\tau)\)

- CB: Crystal ball function
- G: Gaussian
- E: Exponential
- g: Double Gaussian
- \(\delta\): Delta Function

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>(f_{i}(m))</th>
<th>(h_{i}(\tau))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(J/\psi) S</td>
<td>P</td>
<td>(\omega_{i} CB_{1}(m) + (1 - \omega_{i}) G_{1}(m))</td>
<td>(\delta(\tau))</td>
</tr>
<tr>
<td>(J/\psi) S</td>
<td>NP</td>
<td>(\omega_{i} CB_{1}(m) + (1 - \omega_{i}) G_{1}(m))</td>
<td>(E_{1}(\tau))</td>
</tr>
<tr>
<td>(\psi(2S)) S</td>
<td>P</td>
<td>(\omega_{i} CB_{2}(m) + (1 - \omega_{i}) G_{2}(m))</td>
<td>(\delta(\tau))</td>
</tr>
<tr>
<td>(\psi(2S)) S</td>
<td>NP</td>
<td>(\omega_{i} CB_{2}(m) + (1 - \omega_{i}) G_{2}(m))</td>
<td>(E_{2}(\tau))</td>
</tr>
<tr>
<td>Bkg</td>
<td>P</td>
<td>flat</td>
<td>(\delta(\tau))</td>
</tr>
<tr>
<td>Bkg</td>
<td>NP</td>
<td>(E_{3}(m))</td>
<td>(E_{4}(\tau))</td>
</tr>
<tr>
<td>Bkg</td>
<td>NP</td>
<td>(E_{5}(m))</td>
<td>(E_{6}(\tau))</td>
</tr>
</tbody>
</table>
Event Weights (Efficiency and Acceptance)

L1 Trigger: Measured with respect to Minimum Bias events

EF Trigger: Measured from pPb events using J/ψ Tag & Probe method (unbiased trigger efficiency measurement)

Muon Reconstruction: Same as proton-proton efficiency correction for 8 TeV

Acceptance: MC simulation for geometric acceptance ($p_T > 4$ GeV and $|η_μ| < 2.4$)
J/ψ Analysis pPb 5.02 teV

R_{FB} — Asymmetry of J/psi production between the proton beam direction and lead beam direction

R_{FB} vs. y^* and p_T, prompt and non-prompt

$d^2\sigma/dy^*dp_T$, prompt and non-prompt

Non-prompt fraction vs y^* and p_T

Non-Prompt Fraction for J/ψ in $p+Pb$ vs. p_T and y^*

Strong kinematic dependence on p_T
No significant y^* dependence (possible hint of larger b-quark reduction, ion beam direction)
Similar trends observed in pp collisions

\[
\text{nonprompt fraction}(p_T, y^*) = \frac{N_{\text{nonprompt } J/\psi}(p_T, y^*)}{N_{\text{total } J/\psi}(p_T, y^*)}
\]
J/ψ Differential Production Cross Section vs. p_T in p+Pb

ATLAS
2013 p+Pb, 28.1 nb$^{-1}$
$\sqrt{s_{NN}} = 5.02$ TeV

-1.94 < y^* < 0

Ion beam direction

1. $d^2\sigma / dp_T dy^* \times BR(J/\psi \rightarrow \mu \mu)$ vs. p_T (GeV)

2. $d^2\sigma / dp_T dy^* \times BR(\psi(2S) \rightarrow \mu \mu)$ vs. p_T (GeV)

Proton beam direction

0 < y^* < 1.94

Data, FONLL
Differential Production Cross-section for J/ψ in pPb vs. y*

Larger variation for J/ψ from b
R_{FB} for Prompt and Non-prompt J/ψ vs p_{T}

No significant p_{T} dependence observed.
In agreement with theoretical predictions which include shadowing effects.

ALICE: R_{FB} ~ 0.6, y* ~ 3-3.5, p_{T} < 15 GeV, inclusive J/ψ Indicates strong kinematic dependence
LHCb results: ~ 0.9, non-prompt J/ψ, p_{T} < 15 GeV
R_{FB} for Prompt and Non-prompt J/ψ vs y^*

No significant y^* dependence observed in the kinematic range $8 < p_T < 30$ GeV. Complementary results to LHCb and ALICE which do observe R_{FB} below unity and strong kinematic dependence at low p_T suggest a strong kinematic dependence of the cold medium effects on both charmonium and b-quark production.

LHCb results: ~0.75 for $y=2.8$ for prompt J/ψ, $p_T<15$ GeV
LHCb results: ~0.9 for $|y|=2.8$ for non-prompt J/ψ, $p_T<15$ GeV
J/ψ and ψ(2S) Analysis pPb 5.02 TeV and pp 2.76 TeV

d²σ/dy*dp_T, prompt and non-prompt J/ψ and ψ(2S)

Non-prompt fraction vs y* and p_T J/ψ and ψ(2S)

R_pPb vs. y* and p_T, prompt and non-prompt, J/ψ and ψ(2S)

Single and double-ratio, prompt J/ψ and ψ(2S)
Fit Results

Simultaneous fit in invariant mass and pseudo proper time

Fit model similar to J/ψ fit but includes both J/ψ and $\psi(2S)$
Non-prompt fraction of $\psi(2S)$ and J/ψ in 2.76 TeV pp vs. p_T
Differential Production cross-section Prompt $\psi(2S)$ and J/ψ in 2.76 TeV pp
Differential Production cross-section Non-Prompt $\psi(2S)$ and J/ψ in 2.76 TeV pp
Interpolation of pp Cross-Section to 5.02 TeV (R_{pPb})

Interpolation between 2.76 TeV and at 7 TeV and 8 TeV to determine pp cross-section at 5.02 TeV
Interpolation used three functional forms to evaluate systematic uncertainty
$R_{pPb} \text{ vs. } p_T \text{ and } y^*$

$$R_{pPb} = \frac{1}{A} \cdot \frac{\frac{d^2\sigma_{p+Pb}}{dy^* dp_T}}{\frac{d^2\sigma_{p+p}}{dy^* dp_T}}$$

- **Prompt J/ψ**
- **Non-Prompt J/ψ**
- **Prompt ψ(2S)**
R_{pPb} vs. centrality

Prompt J/ψ

$R_{pPb} > 1$

J/ψ independent of centrality

Decreasing trend for the ψ

Non-Prompt J/ψ

$R_{pPb} > 1$

mid-centrality

Prompt $\psi(2S)$

$R_{pPb} > 1$

low-centrality
Number of Z bosons scale with number of nucleon-nucleon interactions.

Ratio of yields provide a test of production scaling independent of geometric models.

Check of the centrality dependence by normalising to the number of Z bosons.

\[\frac{N_\psi}{N_Z} \text{ vs. FCal } E_T \]

Prompt J/\(\psi\)

Non-Prompt J/\(\psi\)

J/\(\psi\) appears to be flat

J/\(\psi\) to Z ratio independent of event activity, nuclear modification also independent of centrality.

\(\psi(2S)\) has a decreasing trend
Self-normalising ratios

Correlation of charmonium production with size of underlying event activity. Deviation from linear scaling enhanced when centrality bias corrections applied.

\[\frac{\psi}{\langle \psi \rangle} = \frac{\frac{N_{\psi}}{N_{\text{evt}}}}{\frac{N_{\psi}^{0-90\%}}{N_{\text{evt}}^{0-90\%}}} \]

\[\frac{E_T^{FCal}}{\langle E_T^{FCal} \rangle} = \frac{\left\langle E_T^{FCal} \right\rangle_{\text{cent}}}{\left\langle E_T^{FCal} \right\rangle_{0-90\%}} \]

Centrality bias corrections with standard Glauber model and GGCF.
Suppression of $\psi(2S)$ to J/ψ vs FCal E_T

Evidence for centrality dependence
Decreasing trend with centrality; magnitude > ALICE
Prompt double ratio \(\equiv \frac{N_{\psi(2S)}^{pPb}}{N_{J/\psi}^{pPb}} \frac{N_{\psi(2S)}^{pp}}{N_{J/\psi}^{pp}} \)

Clear enhancement at low FCal \(E_T \), consistent with \(R_{pPb} \)
Conclusions

First precision measurement of quarkonia production with ion beams in ATLAS

- Differential production cross sections
- \(R_{FB} \) for \(J/\psi \)
- \(R_{pPb} \) for \(J/\psi \) and \(\psi(2S) \) via pp interpolation
- Non-prompt fraction
- Single and double ratios for \(J/\psi \) and \(\psi(2S) \)

Separation: prompt and non-prompt (b) components

Nuclear medium effects seen in a number of observables and hints in others - most prominently:

- \(R_{FB} \) significantly larger than ALICE’s (at forward \(y^* \))
- \(R_{pPb} > 1 \) for \(J/\psi \) and \(\psi(2S) \), ~all measured kinematics
- Double ratio of \(\psi(2S)/J/\psi \) enhanced at low centrality
Backup
Acceptance
ALICE J/ψ results
arXiv:1308.6726 [nucl-ex]
JHEP 02 (2014) 073
ALICE Results on J/ψ in pPb at 5.02 TeV

J/ψ in pA collisions

R_{pPb} close to unity at backward (Pb-going) rapidity
CNM effects at mid- and forward (p-going) rapidity

ALICE (JHEP 02 (2014) 073): inclusive $J/\psi \rightarrow \mu^+\mu^-$, $0<p_T<15$ GeV/c
$L_{\text{int}} (-4.46<y_{\text{cms}}<-2.96) = 5.8$ nb$^{-1}$, $L_{\text{int}} (2.03<y_{\text{cms}}<3.53) = 5.0$ nb$^{-1}$
$L_{\text{int}} (-1.37<y_{\text{cms}}<0.43) = 51$ µb$^{-1}$

global uncertainty = 3.4%

ALICE 2015 Results on J/ψ and $\psi(2S)$ Production in p-Pb Collisions at 5.02 TeV with Atlas
ALICE $\psi(2S)$ results (I)

JHEP 1412 (2014) 073
ALICE $\psi(2S)$ results (II)

JHEP 1412 (2014) 073

ALICE, p-Pb $\sqrt{s_{\text{NN}}} = 5.02$ TeV, inclusive $J/\psi, \psi(2S) \rightarrow \mu^+\mu^-$

- $2.03 < y_{\text{ cms}} < 3.53$
- $-4.46 < y_{\text{ cms}} < -2.96$

$|\alpha_{\text{pp}}| / |\alpha_{\text{p-Pb}}|$

p_T (GeV/c)

$R_{\text{p-Pb}}$

ALICE, p-Pb $\sqrt{s_{\text{NN}}} = 5.02$ TeV, $2.03 < y_{\text{ cms}} < 3.53$

- EPS09 NLO + ELoss with $q_g = 0.055$ GeV/fm (Arleo et al.)
- ELoss with $q_g = 0.075$ GeV/fm (Arleo et al.)
- EPS09 NLO (Vogt)

J/ψ

$\psi(2S)$

p_T (GeV/c)
J/ψ and Y in pPb with LHCb
J/\psi Production in pPb with LHCb

![Graphs showing J/\psi production in pPb with LHCb](image-url)
J/ψ R_{pPb} with LHCb
Definition of y^*

\[y^* = -(y_{\text{lab}} + 0.465) \quad \text{p+Pb run period A} \]
\[y^* = y_{\text{lab}} - 0.465 \quad \text{p+Pb run period B} \]

y^* is defined as positive in the proton beam direction.