Pentaquarks and Tetraquarks at LHCb

Sheldon Stone on behalf of LHCb

DPF Ann Arbor, August 2015
Why pentaquarks?

- Interest in pentaquarks arises from the fact that they would be new states of matter beyond the simple quark-model picture. Could teach us a lot about QCD.

- There is no reason they should not exist
 - Predicted by Gell-Mann (64), Zweig (64), others later in context of specific QCD models: Jaffe (76), Högaasen & Sorba (78), Strottman (79)

- These would be short-lived $\sim 10^{-23}$ s “resonances” whose presence is detected by mass peaks & angular distributions showing the presence of unique J^P quantum numbers
Prejudices

- No convincing states 51 years after Gell-mann & Zweig proposed qqq and $qqqq\bar{q}$ baryonic states

- Previous “observations” of several pentaquark states have been refuted

- These included
 - $\Theta^+ \rightarrow K^0 p$, $K^+ n$, mass=1.54 GeV, $\Gamma \sim 10$ MeV
 - Resonance in D^*-p at 3.10 GeV, $\Gamma = 12$ MeV
 - $\Xi^- \rightarrow \Xi^- \pi^-$, mass=1.862 GeV, $\Gamma < 18$ MeV

- Generally they were found/debunked by looking for “bumps” in mass spectra circa 2004 [see Hicks Eur. Phys. J. H37 (2012) 1.]

DPF Ann Arbor, August 2015
First looked for in LHCb as a potential background for $B^0 \rightarrow J/\psi K^+ K^-$

Large signal found, used for Λ_b lifetime

Dalitz plot showed an unusual feature

[arXiv:1507.03414]

26,000 signal + 5.4% bkgrnd within $\pm 2\sigma$ of peak

$\Lambda_b \rightarrow J/\psi K^- p$
Does this diagram exist?

DPF Ann Arbor, August 2015
Decay amplitude analysis

- Are there “artifacts” that can produce a peak?
 - Many checks done that shows this is not the case: e.g. changing p to K, or π to K allows us to veto misidentified $B_s \rightarrow J/\psi K^- K^+$ & $B^0 \rightarrow J/\psi K^- \pi^+$
 - Clones & ghost tracks eliminated
 - Ξ_b decays checked as a source

- Can interferences between Λ^* resonances generate a peak in the $J/\psi p$ mass spectra?
 - Implemented a decay amplitude analysis that incorporates both decay sequences:
Matrix Element

- Two interfering channels:
 \[\Lambda_b \rightarrow J/\psi \Lambda^*, \]
 \[\Lambda^* \rightarrow K^- p \]
 &
 \[\Lambda_b \rightarrow P_c^+ K^-, \]
 \[P_c^+ \rightarrow J/\psi p \]

- Use \(m(K^- p) \) & 5 decay \(\angle \)'s as fit parameters

- Mass shapes: Breit-Wigner or Flatte

DPF Ann Arbor, August 2015
Models: extended & reduced

- Consider all Λ^* states & all allowed L values

<table>
<thead>
<tr>
<th>State</th>
<th>J^P</th>
<th>M_0 (MeV)</th>
<th>Γ_0 (MeV)</th>
<th># Reduced</th>
<th># Extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Lambda(1405)$</td>
<td>1/2$^-$</td>
<td>1405.1$^{+1.3}_{-1.0}$</td>
<td>50.5 ± 2.0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$\Lambda(1520)$</td>
<td>3/2$^-$</td>
<td>1519.5 ± 1.0</td>
<td>15.6 ± 1.0</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(1600)$</td>
<td>1/2$^+$</td>
<td>1600</td>
<td>150</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$\Lambda(1670)$</td>
<td>1/2$^-$</td>
<td>1670</td>
<td>35</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$\Lambda(1690)$</td>
<td>3/2$^-$</td>
<td>1690</td>
<td>60</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(1800)$</td>
<td>1/2$^-$</td>
<td>1800</td>
<td>300</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$\Lambda(1810)$</td>
<td>1/2$^+$</td>
<td>1810</td>
<td>150</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>$\Lambda(1820)$</td>
<td>5/2$^+$</td>
<td>1820</td>
<td>80</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(1830)$</td>
<td>5/2$^-$</td>
<td>1830</td>
<td>95</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(1890)$</td>
<td>3/2$^+$</td>
<td>1890</td>
<td>100</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(2100)$</td>
<td>7/2$^-$</td>
<td>2100</td>
<td>200</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(2110)$</td>
<td>5/2$^+$</td>
<td>2110</td>
<td>200</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(2350)$</td>
<td>9/2$^+$</td>
<td>2350</td>
<td>150</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>$\Lambda(2585)$</td>
<td>?</td>
<td>≈ 2585</td>
<td>200</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

DPF Ann Arbor, August 2015

parameters 64 146
Results without P_c states

- Use extended model, so all possible known Λ^* amplitudes. m_{Kp} looks fine, but not $m_{J/\psi p}$
- Additions of non-resonant, extra Λ^*'s doesn't help
Extended model with $1 \ P_c$

- Try all J^P up to $7/2^\pm$
- Best fit has $J^P = 5/2^\pm$. Still not a good fit
Reduced model with 2 P_c's

- Best fit has $J^P=(3/2^-, 5/2^+)$, also $(3/2^+, 5/2^-)$ & $(5/2^+, 3/2^-)$ are preferred.
Angular distributions

Good fits in the angular variables
In $m(K^-p)$ slices

P_c's cannot appear in first interval as they would be outside of the Dalitz plot boundary.

- **data**
- **total fit**
- **background**

$P_c(4450)$
$P_c(4380)$

- **$\Lambda(1405)$**
- **$\Lambda(1520)$**
- **$\Lambda(1600)$**

DPF Ann Arbor, August 2015

<table>
<thead>
<tr>
<th>$M(K^p)$ range</th>
<th>Events/(20 MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.55 GeV</td>
<td></td>
</tr>
<tr>
<td>$1.55< M(K^p) <1.70$ GeV</td>
<td></td>
</tr>
<tr>
<td>$1.70< M(K^p) <2.00$ GeV</td>
<td></td>
</tr>
<tr>
<td>2.00 GeV $< M(K^p)$</td>
<td></td>
</tr>
</tbody>
</table>
Significances

- Fit improves greatly, for 1 P_c $\Delta(-2\ln L)=14.7^2$, adding the 2nd P_c improves by 11.6^2, for adding both together $\Delta(-2\ln L)=18.7^2$

- Using toy simulations 1st state has significance of 9σ & 2nd state 12σ, including systematic uncertainties, coming from difference between extended & reduced model results.
Fit results

<table>
<thead>
<tr>
<th>Mass (MeV)</th>
<th>Width (MeV)</th>
<th>Fit fraction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4380±8±29</td>
<td>205±18±86</td>
<td>8.4±0.7±4.2</td>
</tr>
<tr>
<td>4449.8±1.7±2.5</td>
<td>39±5±19</td>
<td>4.1±0.5±1.1</td>
</tr>
<tr>
<td>(\Lambda(1405))</td>
<td></td>
<td>15±1±6</td>
</tr>
<tr>
<td>(\Lambda(1520))</td>
<td></td>
<td>19±1±4</td>
</tr>
</tbody>
</table>

DPF Ann Arbor, August 2015
Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>M_0 (MeV)</th>
<th>Γ_0 (MeV)</th>
<th>Fit fractions (%)</th>
<th>$\Lambda(1405)$</th>
<th>$\Lambda(1520)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>high</td>
<td></td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>Extended vs. reduced</td>
<td>21</td>
<td>0.2</td>
<td>54</td>
<td>10</td>
<td>3.14</td>
</tr>
<tr>
<td>Λ^* masses & widths</td>
<td>7</td>
<td>0.7</td>
<td>20</td>
<td>4</td>
<td>0.58</td>
</tr>
<tr>
<td>Proton ID</td>
<td>2</td>
<td>0.3</td>
<td>1</td>
<td>2</td>
<td>0.27</td>
</tr>
<tr>
<td>$10 < p_p < 100$ GeV</td>
<td>0</td>
<td>1.2</td>
<td>1</td>
<td>1</td>
<td>0.09</td>
</tr>
<tr>
<td>Nonresonant</td>
<td>3</td>
<td>0.3</td>
<td>34</td>
<td>2</td>
<td>2.35</td>
</tr>
<tr>
<td>Separate sidebands</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0.24</td>
</tr>
<tr>
<td>J^P $(3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$</td>
<td>10</td>
<td>1.2</td>
<td>34</td>
<td>10</td>
<td>0.76</td>
</tr>
<tr>
<td>$d = 1.5 - 4.5$ GeV$^{-1}$</td>
<td>9</td>
<td>0.6</td>
<td>19</td>
<td>3</td>
<td>0.29</td>
</tr>
<tr>
<td>$L_{P_0}^{P_c}$ $\Lambda_b^0 \rightarrow P_c^+$ (low/high) K^-</td>
<td>6</td>
<td>0.7</td>
<td>4</td>
<td>8</td>
<td>0.37</td>
</tr>
<tr>
<td>$L_{P_c}^P$ P_c^+ (low/high) $\rightarrow J/\psi p$</td>
<td>4</td>
<td>0.4</td>
<td>31</td>
<td>7</td>
<td>0.63</td>
</tr>
<tr>
<td>$L_{P_0}^{A_0^}$ $\Lambda_b^0 \rightarrow J/\psi \Lambda^$</td>
<td>11</td>
<td>0.3</td>
<td>20</td>
<td>2</td>
<td>0.81</td>
</tr>
<tr>
<td>Efficiencies</td>
<td>1</td>
<td>0.4</td>
<td>4</td>
<td>0</td>
<td>0.13</td>
</tr>
<tr>
<td>Change $\Lambda(1405)$ coupling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Overall</td>
<td>29</td>
<td>2.5</td>
<td>86</td>
<td>19</td>
<td>4.21</td>
</tr>
<tr>
<td>sFit/cFit cross check</td>
<td>5</td>
<td>1.0</td>
<td>11</td>
<td>3</td>
<td>0.46</td>
</tr>
</tbody>
</table>

DPF Ann Arbor, August 2015
Cross-checks

- Many done, some listed here:
- Signal found using different selections by others
- Two independently coded fitters using different background subtractions (sFit & cFit)
- Split data shows consistency: 2011/2012, magnet up/down, $\bar{\Lambda}_b/\Lambda_b$, $\Lambda_b(p_T \text{ low})/\Lambda_b(p_T \text{ high})$
- Extended model fits tried without P_c states, but two additional high mass Λ^* resonances allowing masses & widths to vary, or 4 non-resonant terms of J up to 3/2
Argand diagrams

Amplitudes for 6 bins between $+\Gamma$ & $-\Gamma$

DPF Ann Arbor, August 2015
Data demands 2 states

- Interference between opposite parity states needed to explain P_c decay angle distribution
- Fit projections

![Graph showing corrected events vs. $\cos(\theta_{P_c})$ with data projections for $P_c(4450)$ and $P_c(4380)$]

- Large $m(K_p)$ region: negative interference
- Small $m(K_p)$ region: positive interference

LHCb

DPF Ann Arbor, August 2015
Pentaquark models

- All models must explain J^P of two states not just one. They also should predict properties of other states: masses, widths, J^P. Many models: Let's start with tightly bound quarks ala’ Jaffe

- Two colored diquarks plus the anti-quark, L. Maiani, et. al, [arXiv:1507.04980], ibid [PRD20(1979) 748]

- Colored diquark + colored triquark, R. Lebed [arXiv:1507.05867]

- Bag model, Jaffe; Strings, Rossi & Veneziano [Nucl. Phys. B123 (1977) 507]
Molecular models

- Molecular models, generally with meson exchange for binding
- ala’ Törnqvist [Z. Phys. C61 (1994) 525]
- π exchange models usually predict only one state, mainly $J^P=1/2^+$, but could also include ρ exchange…
- Several authors consider $\Sigma_c D(*)$ components (most of these are postdictions)

DPF Ann Arbor, August 2015
Rescattering

- These are all postdictions
- They construct non-BW amplitude that must mimic mass shape & phase variation of a BW
- eg. $\Lambda_b \rightarrow XY(Z) \rightarrow J/\psi pK^-$, especially when $m(XY) = m(P_c)$, hence the word “cusp”
- These models have so far not predicted the size of the rescattering amplitude
- Also difficult to predict two states…

DPF Ann Arbor, August 2015
Some History: The a_1

- Is it possible for other processes to mimic resonant effects?
- Example: The Deck effect, a lesson in confusion: $\pi^+ p \rightarrow \pi^+ \rho^0 p$, $\rho^0 \rightarrow \pi^+ \pi^-$, using a 3.65 GeV π^+ beam, G. Goldhaber et. al, PRL 12, 336 (1964)

Note: BeV \equiv GeV
“Kinematical” effect

- Clear enhancement near threshold. Is it a new resonance as suggested in original paper?
- Theorists, first Deck, suggest that the threshold enhancement can be due to off shell πp scattering.

R.T. Deck, PRL 13, 169 (1964)
Deck Effect

- Deck’s fit to data can provide adequate explanation
- a_1 then seen in different charge states & different channels, e.g. $K^+ p \rightarrow K^+ \pi^+ \pi^- \pi^0 p$
- Many more sophisticated theory papers
- Controversy continued until observation of a_1 in $\tau^- \rightarrow \pi^+ \pi^- \pi^- \nu$ decays, ~1977
- Surmises: a full amplitude analysis may have proved the resonant nature of the a_1 earlier. Important to see resonant states in several ways. There never was an unambiguous demonstration of the Deck effect.

DPF Ann Arbor, August 2015
Z(4430)$^+$ tetraquark

- $B^0 \rightarrow \psi' \pi^- K^+$, peak in $m(\psi' \pi^-)$, charged charmonium state must be exotic, not $q\bar{q}$
 - First observed by Belle $M = 4433 \pm 5$ MeV, $\Gamma = 45$ MeV
 - Challenged by BaBar: explanation in terms of K^*’s
 - Belle reanalysis using full amplitude fit: $M = 4485 \pm 22^{+28}_{-11}$ MeV, $\Gamma = 200$ MeV, 1^+ preferred but 0^- & 1^- not excluded [arXiv:1306.4894]

- LHCb analysis also uses full amplitude fit
 - $M = 4475 \pm 7^{+15}_{-25}$ MeV
 - $\Gamma = 172$ MeV [arXiv:1404.1903]

see also, LHCb-PAPER-2015-038 in preparation

DPF Ann Arbor, August 2015
Full 4D fit to both $K^* \rightarrow K^-\pi^+$ & $Z \rightarrow \psi'\pi^-$ states

$J^P = 1^+$

Unambiguously
Is it a resonance?

- LHCb produced an Argand plot that shows a clear & large phase change.
- There are also attempts at rescattering explanations.
Conclusions

- LHCb has found two resonances decaying into $J/\psi p$ with pentaquark content of $uudc\bar{c}$ arXiv:1507.03414.

- Determination of their internal binding mechanism will require more study. The preferred J^P are $(3/2^-,5/2^+)$, $(3/2^+, 5/2^-)$ or $(5/2^+, 3/2^-)$

- Other exotic states have appeared containing $c\bar{c}$ quarks: the $Z^+(4430) \rightarrow \psi'K^-\pi^+$ appears to be a tetraquark with $J^P=1^+$. Is binding stronger for $c\bar{c}$?

- Lattice QCD calculations providing masses would be most welcome

- We look forward to establishing the structure of many other states

DPF Ann Arbor, August 2015
See parallel session talk of Nathan Jurik for more details

The End

US LHCb groups gratefully acknowledge support from the NSF

DPF Ann Arbor, August 2015
Our fit explains $m(J/\psi K^-)$
Extended model with 2 P_c's

(a) LHCb

(b) LHCb

DPF Ann Arbor, August 2015
Other Explanations

- **Molecule:**
 L. Ma et al., [arXiv:1404.3450]
 T. Barnes et al., [arXiv:1409.6651]

- **Same scattering phase as Breit-Wigner**

- **Rescattering:**
 P. Pakhov & T. Uglov
 [arXiv:1408:5295]

- **Opposite phase**

- **Ruled out by LHCb Argand diagram**