To calculate the B rest frame, the B momentum vector in the laboratory frame must point to the primary vertex. The B momentum vector in the laboratory frame is determined from the unit vector connecting the B decay point and the primary vertex. The module of this vector is equal to
\[\sqrt{\sum_{i} p_i^2} \]
where \(p_i \) are the momenta of the reconstructed final state particles.

Motivation

Lepton universality requires equal couplings between the gauge bosons and the three lepton families. No deviation of such behavior has yet been observed although some hints of lepton non-universality effects in \(B \rightarrow D^* \ell \nu \) and \(B \rightarrow K^* \ell \nu \) decays have been seen \([1]\). A large class of models that extend the Standard Model propose additional interactions involving enhanced couplings to the third family that would violate this principle. Semileptonic decays of b hadrons to \(\ell \) leptons provide a sensitive probe for these effects. The presence of additional charged Higgs bosons can have significant effect on the rate of \(B \rightarrow D^* \ell \nu \) \([2]\).

Ballar and Belle have recently reported updated measurements of the ratios \([3,4]\):

\[\mathcal{R}(D^*) = \frac{B(B \rightarrow D^* \ell \nu)}{B(B \rightarrow D^\ell \nu)} \]

\[\mathcal{R}(D) = \frac{B(B \rightarrow D \ell \nu)}{B(B \rightarrow D^\ell \nu)} \]

which show deviations from the Standard Model predictions as shown in the figure below.

Within the Standard Model, these ratios differ from unity mainly because of phase-space effects due to the difference in charged lepton masses. In this work we present the first measurement of \(\mathcal{R}(D^*) \) in hadron collisions at the LHC with data collected by LHCb in 2011 and 2012.

The LHCb Detector

The LHCb detector \([5]\) is a single-arm forward spectrometer covering the pseudo-rapidity range \(2 < \eta < 5 \), designed for the study of b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region, a 5,500 magnet. The tracking system provides a measurement of momentum, \(p \), of charged particles with a precision of up to 0.3\% in \(3 < p < 100 \) GeV/c.

The tracking system consists of a silicon-strip vertex detector surrounding the pp interaction region, a 5,500 magnet. The tracking system provides a measurement of momentum, \(p \), of charged particles with a precision of up to 0.3\% in \(3 < p < 100 \) GeV/c.

Trigger selection

- no hardware trigger requirement of \(\mu p \) to preserve distinct kinematic distributions for the signal and normalization channels.
- one high \(p_T \) particle in the event independent of the \(D^* \mu \).
- software trigger: accept \(D^+ \rightarrow K^- \mu^+ \) with candidates satisfying \(p_T > 2 \) GeV/c.
- \(K^- \mu^+ \), \(p_T > 3 \) GeV/c at least one with \(p_T > 15 \) GeV/c.
- reconstructed mass consistent with the known \(D^0 \) mass.

Offline Selection

- well identified \(K^- \) and \(\mu^+ \) from \(D^0 \) decay.
- \(D^0 \) mass within 3 \(\sigma \) of measured value.
- \(D^0 \mu^+ \) form a vertex.
- \(\Delta m = m(D^{0 \text{rec}}) - m(D^{0}) \) within 2.5\% of the resolution.
- \(\mu \) well identified with \(3 < p_T < 80 \) GeV/c forming a vertex with the \(D^0 \) and well separated from the primary vertex.
- \(D^0 \mu^+ \) should have invariant mass \(< 5280 \) MeV/c\(^2\) and their momentum vector must point to the primary vertex.
- \(MVA \) trained to select a sample coming from a b meson.

Data Sample

The data analysed in this work correspond to the integrated luminosity of 1.0 fb\(^{-1}\) and 2.0 fb\(^{-1}\) collected at proton-proton center-of-mass energies of 7 \(\mathrm{TeV} \) (2008) and 8 \(\mathrm{TeV} \) (2012) respectively. The signal channel \(B \rightarrow D^* \ell \nu \) with \(\ell \rightarrow \mu \) is used and the normalization channel \(B \rightarrow D \ell \nu \) produce identical visible states and are reconstructed by a common procedure.

References

5. LHCb collaboration, M. Gandelman, Miriam Gandelman on behalf of the LHCb Collaboration.