LHCb prompt calibration and detector performance

Manuel Schiller

on behalf of the LHCb collaboration

CERN

September 1st, 2015
- Introduction
- Improved LHCb trigger in Run II
- Real-time alignment and calibration
- Improvements in track reconstruction
- Conclusion
LHCb is heavy flavour experiment at the LHC

- goal: indirect search for New Physics in CP violation and rare decays of beauty and charm

- requirements:
 - excellent tracking (momentum, impact parameter and primary vertex resolution – $dp/p \sim 0.5\%$)
 - excellent decay time resolution ($\mathcal{O}(45\text{ fs})$ for B mesons, depending on decay)
 - excellent particle identification

- very good vertex and decay time resolution
- excellent momentum resolution
excellent particle identification from interplay of RICHes, calorimeters and muon system
importance of alignment

- spatial detector alignment crucial for physics performance
- vertex detector alignment needed to isolate secondary vertices from b and c hadrons
- optimal tracking system alignment for best dp/p and mass resolution

Run I
LHCb Preliminary
First alignment
$\sigma_{\Upsilon} = 92$ MeV/c^2

Run I
LHCb Preliminary
Improved alignment
$\sigma_{\Upsilon} = 49$ MeV/c^2
importance of calibration

- tight selection criteria in hadronic channels require proper RICH calibration

LHCb trigger in 2012

- **L0 trigger (hardware)**
 - high E_T or p_T signatures in muon or calorimeter system
 - 1 MHz detector readout

- **HLT trigger (software)**
 - flexible software trigger
 - two stages (HLT1 and HLT2)
 - simplified track and vertex reconstruction
 - use inclusive and exclusive selections
 - defer 20% of data to HLT farm node disk, use inter-fill time for processing
LHCb trigger for Run II

- larger farm and faster tracking allow offline quality reconstruction
 - defer everything between HLT1 and HLT2
 - can do near real-time alignment and calibration before HLT2 runs

→ offline quality reconstruction already in HLT2 (incl. RICH PID)

- new feature: TURBO stream: perform offline-quality analysis directly with HLT output (∼5 kHz)

→ more efficient and pure selections (for details, see talk by Roel Aaij on Friday)
HLT1 selects special events for alignment and calibration at start of fill

parallel processing on ∼ 1700 HLT farm nodes

tracker alignment details

analyser (multiple nodes): massively parallel track reconstruction
iterator (single node): combine analyser output, minimise χ^2, extract alignment constants

RICH alignment details

analyser (multiple nodes): photon reconstruction, fill histograms
iterator (single node): fit histograms, extract alignment constants
Spatial alignment

- use tracks in vertex detector, tracker and muon stations
- iterative procedure:
 1. reconstruct tracks using current alignment constants (Kalman filter fit)
 2. derive new alignment constants by minimisation of global χ^2
 (uses (some) particle masses and vertex positions as global constraints)
 3. iterate until $\Delta \chi^2$ below threshold

→ alignment constants available for HLT2 within minutes, magnetic field and multiple scattering taken into account

(for a much more detailed treatment of the subject, see Varvara Batozskaya’s poster)
Online alignment stability

- Update alignment constants only when above threshold (dashed lines)
 - VELO opens and closes each fill (protect sensors during injection): expect updates every few fills
 - Tracking system (TT, IT, OT): expect updates every few weeks

LHCb VELO

Preliminary

LHCb Tracker

Preliminary

M. Schiller (CERN)
RICH mirror alignment

- framework also used to monitor muon and RICH mirror alignment
- misalignment between tracker and RICH leads to shift of track projection point on photodetector plane from centre of Cherenkov ring
- Cherenkov angle $\Delta \theta$ shows sinusoidal shift with angle around projection point ϕ
- iterative procedure in online alignment framework (filling histograms, fit for alignment constants)
RICH calibration

- RICH gas refractive index
 - depends on temperature, pressure, composition of gas (changes with time)
 - fit difference between expected and measured Cherenkov angle to extract scale factor
- HPD images
 - electric and magnetic fields distort drifting charges inside HPDs
 - calibrate/correct anode image to give nice Cherenkov ring

- calibration run and updated automatically for each run

![HPD images: bad and good](attachment:image.png)
Outer tracker drift time calibration

- Measured drift times can be compared to estimated ones (drift radius estimate known from tracking).
- Most common cause of discrepancies: time shift between proton collision time and LHCb clock.
- Evaluated each run, and global drift time offset corrected for next run if above threshold.

![Graph showing drift time calibration](image)

Legend:
- t_0^{new} Applied
- t_0^{new} Not applied

Phase:
- Commissioning
- Early Measurements
- Stable running

Calibration number [a.u.]

Time [ns]:
- 0
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5

LHCb OT Preliminary
Calorimeter calibration

- occupancy method
 - compare per-cell occupancy to reference sample
 - occupancy ratio is proportional to HV ratio
 - compensate gain variations by adjusting HV based on occupancy ratio

 \[\left| \left(\frac{\text{occ}}{\text{occ_{ref}}} \right)_{\text{cell}} - 1 \right| \text{ is above threshold} \]

- calibration using π^0:
 - use π^0 mass peak position to obtain a per-cell calibration coefficient
 (such that the π^0 mass peak appears at the nominal mass)
 - define PMT high voltage tuning per cell
 - run on HLT farm as alignment tasks

- both calibration methods in place, and running routinely
- run exactly same track reconstruction as offline in HLT in Run II
- to maintain high tracking efficiency, need speed improvements to fit in time budget
 - need some new ideas
 - use momentum information from upstream tracks to speed up long track reconstruction in HLT1
 - fast Kalman track fit (uses simplified geometry)
- optimise, optimise, optimise
March 2014

- identify hot spots by profiling
 - vectorisation (track fit, magnetic field)
 - caching (material description)
 - fast approximations (e.g. various corrections in the Outer Tracker)
- replace a few pattern recognition algorithms with new implementations
- algorithm tuning

⇒ vast speedup realised (34% overall, more in code used in HLT)
tracking: new ideas

- have NN classifier for fake tracks
 - very powerful quality metric, hence cleaner track sample
 - saves combinatorics (and thus CPU)
 - hence lower HLT output rate (see plot!)
- can loosen χ^2 cut in turn: higher efficiency
first experiment of this scale to perform alignment and calibration online

works extremely well; get beautiful peaks out of the trigger (TURBO stream)

- tremendous improvements in track reconstruction (time)
- offline track reconstruction now also used in HLT

\[D^0 \rightarrow K^− \pi^+ \]
\[D^+ \rightarrow K^− \pi^+ \pi^+ \]
\[D_s^+ \rightarrow K^+ K^− \pi^+ \]

(for details, see talk by Alex Pearce on Monday)