Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV with ATLAS

Sooraj Radhakrishnan
(on behalf of the ATLAS collaboration)

arXiv:1504.01289
Introduction and Motivation

- Event shape dependence of flow harmonics.
 - Helps understand change in medium response with event shape.
 - Disentangle system size and system shape dependence.
 - $v_2 - v_n$ and $v_3 - v_n$ correlations (study of non-linear response).
Introduction and Motivation

• Event shape dependence of flow harmonics.
 • Helps understand change in medium response with event shape.
 • Disentangle system size and system shape dependence.
 • $v_2 - v_n$ and $v_3 - v_n$ correlations (study of non-linear response).

• Correlations between Event Planes of different orders studied previously (ATLAS: PRC 90, 024905 (2014)).

• Not reproduced by initial state correlations.
 • Additional constraints on medium response.

• Event shape selected analysis helps to understand these correlations better.
Both ellipticity and system size change with centrality!
Both ellipticity and system size change with centrality!
Within a given centrality v_n varies over a wide range.
• Both ellipticity and system size change with centrality!
• Event shape selection allows to control the shape of the events (ellipticity, triangularity etc), but without changing centrality.
• Can study correlations of many observables with the system shape, eg jet properties, flow correlations etc.
i) Bin events in centrality classes.
ii) For each centrality class, bin into event-shape classes based on magnitude of q_m vector.
iii) Calculate v_n and $v_m - v_n$ correlations using tracks in ID (using 2PC from pairs with $\Delta \eta > 2$).

\[q_m = q_m e^{im \Psi_m^{obs}} \]
\[= \frac{\sum E_{Tj} e^{-im \phi_j}}{\sum E_{Tj}} - \langle q_m \rangle_{evts} \]
Events are binned into \(q \)-vector classes based on the magnitude of \(q_2 \) or \(q_3 \) in FCal.
Event Shape Selection

- Events are binned into q-vector classes based on the magnitude of q_2 or q_3 in FCal.
- Good correlation between q_n in forward detector and v_n in mid-rapidity.
v_2 at intermediate p_T

- v_2 at intermediate p_T plot against v_2 at low p_T. Each point is for a centrality interval.

- For same v_2 at low p_T, smaller v_2 at higher p_T, for peripheral events.

- Effect of larger viscosity in peripheral classes.

Does the correlation depend on event-shape?
• Similar plot, but now in each centrality many points corresponding to the event-shape classes.

• Within a centrality ratio between low p_T and intermediate p_T, v_2 remains same.

• Slope changes with centrality.

• Suggests viscous effects controlled by system size and independent of event ellipticity.
• Similar plot, for v_3.

• Within a centrality ratio between low p_T and intermediate p_T v_3 remains same.

• Slope changes with centrality.

• Suggests viscous effects controlled by system size and independent of event triangularity.
- Can study v_n as a function of v_m at fixed centralities.

- Colored markers are from different event shape classes.

- Anti-correlation between v_2 and v_3, particularly in mid-central and peripheral event classes.

- Initial state effects or from final state interactions?

\[v_2 - v_3 \text{ correlation} \]
$v_2 - v_3$ correlation: Comparison with initial state correlations

- $ε_2 - ε_3$ correlation from initial state models show similar behavior.

- Some deviations though, particularly in most central classes.
Non-linear increase of v_4 with v_2.

v_4 is expected to have non-linear correlation with v_2, $v_4 \propto v_2^2$.
- From initial geometry, $\epsilon_4 \propto \epsilon_2^2$
- Due to non-linear medium response.
- From freeze-out due to anisotropic flow profile.

Can also have a contribution from quadrangular geometry uncorrelated with ϵ_2, ϵ_4^{True}.

Do initial state models capture this correlation?
• v_4 gets two contributions: $v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{True}} + c_1 v_2^2 e^{i4\Phi_2}$
 c_0 captures response to ϵ_4^{True} and $c_1 v_2^2$, the non-linear contribution.

• v_4 can be fit with a function, $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

• Fits work quite well to the data

• Also shown are $\epsilon_2 - \epsilon_4$ correlations from MC Glauber and MC-KLN: initial state models fail to describe data.
$v_2 - v_4$ correlation: Linear and non-linear components

- Weak centrality dependence for the linear component, strong centrality dependence for non-linear component.
- Linear and non-linear terms are argued to have different sensitivities to viscosity (D. Teaney, L. Yan PhysRevC.86.044908)

\[
v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{True}} + c_1 v_2^2 e^{i4\Phi_2}
\]
\[
v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}; \quad v_4^L = c_0, \quad v_4^{NL} = c_1 v_2^2
\]
\(v_2 - v_4\) correlation: Linear and non-linear components

- Linear and non-linear components may also be calculated from EP correlations.

\[
v_4^{NL} = v_4 \langle \cos 4(\Phi_4 - \Phi_2) \rangle
\]

\[
v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}; \quad v_4^L = c_0, \quad v_4^{NL} = c_1 v_2^2
\]

- Consistent results between the two methods!
v_5 gets a contribution also from $v_2 v_3$: $v_5 e^{i5\Phi_5} = c_0 e^{i\Phi_5^{True}} + c_1 v_2 v_3 e^{i(3\Phi_3+2\Phi_2)}$

- $\epsilon_2 - \epsilon_5$ correlations from initial state models do not describe the data.
- The fit, $v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2}$ can be used to extract linear and non-linear components.
- Also good agreement with EP results.
• Significant v_n harmonics observed in $p+Pb$.
• v_n shown for similar multiplicity event classes.
• Difference in v_2 magnitude reflects difference in initial ellipticity.
• v_3 magnitudes similar since driven by fluctuations in both systems.
• v_4 larger in Pb+Pb than p+Pb.
Non-linear response in p+Pb?

- v_n in p+Pb and Pb+Pb found to have similar p_T dependence.
- v_2 is different by a constant scale factor change in average geometry.
- v_3 driven by fluctuations, no scale factor needed.
- v_4 driven by fluctuations, but also by v_2 differ by a scale factor (J.Jia IS2014).
• v_4 driven by fluctuations, but also by v_2 differ by a scale factor \((J.\text{Jia IS2014}) \).

\[
v_4^{\text{pPb}} = v_4^{L^2} \{\text{pPb}\} + v_4^{NL^2} \{\text{pPb}\}
= v_4^{L^2} \{\text{PbPb}\} + a^2 c^2 v_2^4 \{\text{PbPb}\}
= (1 - b^2) v_4^2 \{\text{PbPb}\} + a^2 b^2 v_2^4 \{\text{PbPb}\}
= (1 - b^2 + a^4 b^2) v_4^2 \{\text{PbPb}\} \approx 0.66^2 v_4^2 \{\text{PbPb}\}
\]

\(a = 0.66, \ b = \langle \cos 4(\Phi_2 - \Phi_4) \rangle \approx 0.84 \)
Presented results of correlations of flow harmonics with event shape.

- Correlation between v_n at different p_T
 - Correlation between v_2 (v_3) at different p_T has strong centrality dependence.
 - But independent of event shape.
 - Suggests viscous effects controlled by system size, not system shape.

- Anti correlation between v_2 and v_3.
 - Mostly described by $\epsilon_2 - \epsilon_3$ correlations from initial state models.
- Non-linear correlation between v_2 and higher order harmonics.
 - Initial state models fail to describe the observed correlations.
 - Fits with a two component function with linear and non-linear response terms.
 - Linear component has weak centrality dependence, non-linear component has strong centrality dependence.
 - Consistent with results from EP correlations.

- v_4 values from p+Pb also suggest contribution from non-linear response to geometry.
 - Supports the geometric and collective origin of ridge in p+Pb collisions.
Back Up
• $v_n / \sqrt{\epsilon_n^2}$ as a function of N_{part}.

• For $n=4$ and $n=5$, both linear and total v_n are shown.

• For linear component, larger variation can be seen with centrality.

• Indicates larger viscous damping for higher order harmonics.
Event shape selection

- v_n as function of p_T for different shape selected event classes selected on q_2 (left) and q_3 right.
v_2 - v_4 correlation

- \(v_4 \) gets two contributions: \(v_4 e^{i4\Phi_4} = c_0 e^{i\Phi_4^{true}} + c_1 v_2^2 e^{i4\Phi_2} \)

- The fit, \(v_4 = \sqrt{c_0^2 + c_1^2 v_2^4} \) can be used to extract linear and non-linear components.

- Linear and non-linear components are argued to have different sensitivities to viscosity of the medium \((D. Teaney, L. Yan, PhysRevC.86.044908)\)
\[v_5 e^{i5\Phi_5} = c_0 e^{i\Phi_5^{True}} + c_1 v_2 v_3 e^{i(3\Phi_3+2\Phi_2)} \]

\[v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2} \quad ; \quad v_5^L = c_0, \quad v_5^{NL} = c_1 v_2 v_3 \]

- Linear and non-linear components may also be calculated from EP correlations.

\[v_5^{NL} = v_5 \langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \rangle \]

\[v_5^L = \sqrt{v_5^2 - (v_5^{NL})^2} \]

- Weak centrality dependence for the linear component, strong centrality dependence for the non-linear component.
- Consistent with EP correlation results.
• Similar analysis can be done using q_3 selected events.
• For e.g. can use to extract linear and non-linear components in v_5.
• Gives consistent results!
• More results in \(\text{arXiv:1504.01289}\)

\[
v_5 e^{i5\Phi_5} = c_0 e^{i\Phi_5^{\text{True}}} + c_1 v_2 v_3 e^{i(3\Phi_3 + 2\Phi_2)}
\]

\[
v_5 = \sqrt{c_0^2 + (c_1 v_2 v_3)^2} ; \quad v_5^L = c_0 , \quad v_5^{NL} = c_1 v_2 v_3
\]