Searches for heavy long-lived particles at LHCb

Marcin Chrząszcz
mchrzasz@cern.ch

SUSY 2015, Tahoe City, 23-29 August, 2015
Why long-lived particles?

- We all know here that the SM is incomplete.
- Unfortunately we do no know what is the scale of NP.
- NP still can come from the Higgs sector \(\Rightarrow \) not all properties are yet constrained.
- There is a long list of theoretical models that predict the existence of new particles that couple to the SM sector by mixing with the Higgs.
 - Inflaton, axion-like, dark matter mediator models also predict the new boson to be light.
 - SUSY models also can have stable long living particles like \(\tilde{q}, \tilde{\ell} \).
LHCb detector - tracking

- Excellent Impact Parameter (IP) resolution ($20 \, \mu m$).
 ⇒ Identify secondary vertices from heavy flavour decays
- Proper time resolution $\sim 40 \, fs$.
 ⇒ Good separation of primary and secondary vertices.
- Excellent momentum ($\delta p/p \sim 0.4 - 0.6\%$) and inv. mass resolution.
 ⇒ Low combinatorial background.
LHCb detector - particle identification

- Excellent Muon identification $\epsilon_{\mu \rightarrow \mu} \sim 97\%, \epsilon_{\pi \rightarrow \mu} \sim 1 - 3\%$
- Good $K - \pi$ separation via RICH detectors, $\epsilon_{K \rightarrow K} \sim 95\%$, $\epsilon_{\pi \rightarrow K} \sim 5\%$.
 \Rightarrow Reject peaking backgrounds.
- High trigger efficiencies, low momentum thresholds. Muons: $p_T > 1.76\text{GeV}$ at L0, $p_T > 1.0\text{GeV}$ at HLT1, $B \rightarrow J/\psi X$: Trigger $\sim 90\%$.
• In 2011 and 2012 LHCb has gathered 3 fb$^{-1}$ of pp collisions.
$B \rightarrow K^*\chi(\mu\mu)$ search

- Search for displaced di-muon vertex coming form B meson.

$B^0 \rightarrow K^*\chi(\mu^-\mu^+)$

- If χ mixes with the Higgs and it is light:
 - $\Gamma(K \rightarrow \pi\chi) \propto m_t^4 \lambda^5$
 - $\Gamma(D \rightarrow \pi\chi) \propto m_b^4 \lambda^5$
 - $\Gamma(B \rightarrow K\chi) \propto m_t^4 \lambda^2$

- In addition; $K^* \rightarrow K^+\pi^-$ helps in vertex reconstruction.
- High $\mathcal{B}(\chi \rightarrow \mu^-\mu^+)$.

Marcin Chrząszcz (Universität Zürich) Searches for heavy long-lived particles at LHCb
$B \rightarrow K^* \chi(\mu\mu)$ motivation

Discussed models:

 - $\tau_\chi = 10^{-8} - 10^{-10}$ s
 - $m_\chi \mathcal{O}(1 \text{ GeV})$
 - $\mathcal{B}(B \rightarrow K \chi) \sim 10^{-6}$
 - effective couplings to SM particles:
 - $g_Y \frac{m_f}{v_{EW}}$, $g_Y = \sin \theta$

 - Prompt decay.
 - Large allowed masses.
 - Axion decay constant: $f_\chi \sim 1 - 3$ TeV
 - Coupling $\propto \frac{m_f}{f_\chi}$.

All those particles have width much smaller than resolution of LHCb detector.
Signal properties

⇒ Depending on the coupling of the hidden sector we can identify two lifetime regimes:

Long lifetime ($> 0.2 \text{ ps}$)
- Inflaton *JHEP* 1005:010
- Displaced vertex.
- Almost background free.
- Lower reconstruction efficiency.

Short lifetime ($\leq 0.2 \text{ ps}$)
- Dark matter mediator *Phys. Lett. B*727
- Axion *Phys.Rev.D*81
- Prompt decay.
- Contaminated via SM decay.

Marcin Chrząszcz (Universität Zürich) Searches for heavy long-lived particles at LHCb
Selection

- Trigger on muons.
- Multivariate selection: μBDT JINST 8(2013)
 - μBDT ensures flat efficiency in lifetime of χ.
- Optimized on Punzi figure-of-merit:
 \[
 P_a = \frac{S}{\frac{5}{2} + \sqrt{B}},
 \]
 with S and B are signal and background yields.
- Factorize lifetime into two components: $\mathcal{L} = \mathcal{L}^{\text{prompt}} \otimes \mathcal{L}^{\text{displaced}}$
 - Prompt: $\tau < 3\sigma_{\tau}$
 - \leftrightarrow SM background of $B^0 \rightarrow K^*\mu^-\mu^+$
 - Displeased: $\tau > 3\sigma_{\tau}$
 - \leftrightarrow Almost background free.
Search strategy

- B^0 mass constrained.
- Di-muon mass resolution $\sigma_m = 1 - 7$ MeV.
- Scan m_{test} in steps of $0.5 \sigma_m$.
 - Wide resonances can’t affect the search.
 - Narrow resonances we veto.
- Calculations performed in each m_{test} window.
Results

⇒ Grey regions correspond to vetoed regions where narrow resonances are expected.
⇒ Largest deviation seen in $m_\chi = 253$ MeV.
⇒ Not statistically significant: local p-value = 0.2.
Branching fraction exclusion limit

\Rightarrow No deviations from background only hypothesis is observed.

- We set a 95% CL upper limit as function of mass and lifetime of the new particle (in the LHCb accessible range).
- Lower lifetimes have better limit due to higher reconstruction efficiency.

Marcin Chrząszcz (Universität Zürich)
Searches for heavy long-lived particles at LHCb
Benchmark models

⇒ Interpretation of the results in two specific models:

(Specific) inflaton model

Axion portal

Include 3 sterile neutrinos N_f

MSSM-like two Higgs doublet model.
Long living charged particles like $\tilde{\tau}$

⇒ Long living particles can also be produced in the PV.

• This kind of particles would be produce in relatively low velocities and could be identified by their time -of-flight, dE/dx or in Cherenkov detectors.

⇒ LHCb performed a search for long living $\tilde{\tau}$ particles.
⇒ $\tilde{\tau}^+\tilde{\tau}^-$ produced by Drell-Yan process.
\(\tilde{\tau}\) analysis strategy

⇒ Search performed \(\tilde{\tau}\) in mass range of 124 – 309 GeV.
⇒ After the loose preselection to reduce normal Drell-Yan production.

⇒ After the preselection an Neural Net is trained based on Cherenkov detectors to calculate to further suppress the remaining background.
• No significant signal yield has been observed.
• 95% upper limit has been set.
Hidden valley searches

• A possible extensions of the SM are models where the new particles have a small couplings to the SM particles.
• Such models are:
 ○ Lightest SUSY
 ○ B/LNV
 ○ Gravity mediated SUSY
 ○ Hidden Valleys
• LHCb have performed a search for π_ν particles that are pair produced from Higgs like SM particle.
• They have a long lifetime and decay to pair of jets.
Analysis strategy

- Efficient trigger for long living particles.
- Reconstruction of two jets.
- MVA used for vertex search.
- Search performed in different regions of displaced vertexes (R_{xy}).
 - $0.4 < R_{xy} < 4$ mm, removes heavy flavour and material interaction backgrounds.
Di-jet distribution

- Signal component fit result, Background component
Results

![Graph showing the cross section \(\sigma(H) \times B(H \rightarrow \pi_v \pi_v) \) vs. lifetime [ps] for different masses of the particle \(m_{\pi_v} \).](image)

- \(m_{\pi_v} = 25 \text{ GeV}/c^2 \)
- \(m_{\pi_v} = 50 \text{ GeV}/c^2 \)
- \(m_{\pi_v} = 35 \text{ GeV}/c^2 \)
- \(m_{\pi_v} = 35 \text{ GeV}/c^2, \pi_v \rightarrow c\bar{c} \)
- \(m_{\pi_v} = 43 \text{ GeV}/c^2 \)
- \(m_{\pi_v} = 35 \text{ GeV}/c^2, \pi_v \rightarrow s\bar{s} \)

LHCb

Marcin Chrząszcz (Universität Zürich)

Searches for heavy long-lived particles at LHCb
Conclusion

• A search for a dark boson in the decay channel $B^0 \to K^* \mu^- \mu^+$ has been presented.
 ○ No deviations from SM observed.

• Results are the most constraining exclusion limit on the process.
• LHCb is suited for search for long lived particles.
• Stay tuned, more searches like this are on the way.