Student Manual
for
The Art of Electronics

Thomas C. Hayes
Paul Horowitz
Harvard University

CAMBRIDGE UNIVERSITY PRESS
Contents

Chapter 1: Foundations

- Overview: Chapter 1 ... 1
- Class 1: DC Circuits .. 3
 - Worked example: Resistors & instruments............... 15
- Lab 1: DC circuits .. 24

- Class 2: Capacitors & RC Circuits 32
 - Worked example: RC circuits 46
 - A Note on reading capacitor values 51
- Lab 2: Capacitors ... 54

- Class 3: Diode Circuits .. 61
- Lab 3: Diode circuits ... 75
 - Wrap-up: Ch. 1: Review 80
 - Jargon and terms .. 81

- Class 4: Transistors I: First Model 84
 - Worked example: Emitter follower 90
- Lab 4: Transistors I .. 94

- Class 5: Transistors II: Corrections to the first model: Ebers-Moll: r_{o}; applying this new view ... 100
 - Worked example: Common-emitter amplifier (bypassed emitter) ... 115
- Lab 5: Transistors II .. 118

- Class 6: Transistors III: Differential amplifier;
 - Miller effect .. 124
 - Worked example: Differential amplifier 131
- Lab 6: Transistors III ... 134
 - Wrap-up Ch. 2: Review 139
 - Jargon and terms .. 140

Chapter 2: Transistors (bipolar)

- Overview: Chapters 2 & 3 ... 82
- Class 4: Transistors I: First Model 84
 - Worked example: Emitter follower 90
- Lab 4: Transistors I .. 94

- Class 5: Transistors II: Corrections to the first model: Ebers-Moll: r_{o}; applying this new view ... 100
 - Worked example: Common-emitter amplifier (bypassed emitter) ... 115
- Lab 5: Transistors II .. 118

- Class 6: Transistors III: Differential amplifier;
 - Miller effect .. 124
 - Worked example: Differential amplifier 131
- Lab 6: Transistors III ... 134
 - Wrap-up Ch. 2: Review 139
 - Jargon and terms .. 140

Chapter 3: Field Effect Transistors

- Class 7: FETs I (linear applications) 142
 - Worked example: Current source, source follower 153
- Lab 7: FETs I (linear) .. 156
 - (We return to FETs in Lab 11)

Chapter 4: Feedback and Operational Amplifiers

- Overview: Feedback: Chapters 4, 5 & 6 163
- Class 8: Op Amps I: Idealized view 166
 - Worked Example: Inverting amplifier; summing circuit ... 175
- Lab 8: Op amps I ... 175

- Class 9: Op Amps II: Departures from ideal 184
 - Worked example: Integrators; effects of op amp errors ... 196
- Lab 9: Op amps II ... 200

Chapter 4 (continued); Chapter 5

Active Filters & Oscillators

- Class 10: Op Amps III: Positive Feedback, Good and Bad: comparators, oscillators, and unstable circuits; a quantitative view of the effects of negative feedback ... 207
- Appendix: Notes on op amp frequency compensation 222
 - Worked example: Effects of feedback (quantitative) ... 222
 - Schmitt trigger .. 227
 - Op Amp Innards: Annotated schematic of the LF411 ... 232
- Lab 10: Positive feedback, good and bad 233
 - Wrap-up Chs. 4 & 5: Review 242
 - Jargon and terms .. 243

Chapter 3: Field Effect Transistors (revisited)

- Class 11: FETs II: Switches (power switching and analog switch applications) ... 244
 - Worked example: Sample and hold 250
- Lab 11: FET switches ... 255
 - Wrap-up Ch. 3: Review 264
 - Jargon and terms .. 265

Chapter 6: Voltage Regulators and Power Circuits

- Class 12: Voltage Regulators 267
- Lab 12: Voltage regulators .. 274
 - Wrap-up Ch. 6: Jargon and terms 280
(This course omits the Text's Chapter 7: Precision
Circuits & Low-Noise Techniques)

DIGITAL

Chapter 8: Digital Electronics
Overview: Chapters 8 & 9..281
Class 13: Digital Gates; Combinational Logic281
 Worked example: Multiplexers...........................283
 Binary arithmetic ...295
Lab 13: Digital gates...309

Class 14: Sequential Circuits; Flip-Flops320
 Worked example: combinational logic332
Lab 14: Flip-flops...334

Class 15: Counters ...342
 Worked example: counter applications351
Lab 15: Counters..362

Class 16: Memory; Buses; State Machines..............375
 Worked example: state machines384
Lab 16: Memory; State Machines..........................394
 Wrap-up Ch. 8: Review.....................................403
 Jargon and terms..404

Chapter 9: Digital Meets Analog
Class 17: Analog <-> Digital;
 Phase-Locked Loop..406
Lab 17: Analog <-> Digital;
 Phase-Locked Loop..421
 Wrap-up Ch. 9: Review.....................................430
 Jargon and terms..430

 Chapters 10, 11: Microcomputers;
 Microprocessors
Overview: Chapters 10 & 11.................................431
Class 18: µ1: IBM PC and our lab
 microcomputer...433
 Worked example: minimal 68008 controller............441
Lab 18: Add CPU..443

Class 19: Assembly Language; Inside the CPU; I/O
 Decoding..455
 Supplementary notes: introduction to assembly
 language...467
Lab 19: µ2: I/O..471

Class 20: µ3: A/D <-> D/A Interfacing; Masks;
 Data tables..479
Lab 20: Subroutines; More I/O Programming............489

Class 21: µ4: More Assembly-Language
 Programming; 12-bit port................................498
 Worked example: 10 tiny programs......................503
 Worked Example: 12-bit frequency counter............518
 Hand assembly: table of codes..........................521
Lab 21: A/D, D/A, Data Handling........................523

Class 22: µ5: Interrupts & Other 'Exceptions'........535
 Debugging aid: Register Check in two
 forms...541
Lab 22: 'Storage scope'; Interrupts & other
 'exceptions'..548

Class 23: µ6: Wrap-up: Buying and Building............562
Lab 23: Applying your microcomputer ('Toy
 Catalog')...567
 Wrap-up Chapters 10, 11:
 Review..586
 Jargon and terms..587

Appendix:
A Equipment and Parts List................................588
B Selected data sheets
 2N5485 JFET...592
 DG403 analog switch.....................................593
 74HC74 dual D FLIP-FLOP..............................595
 AD7569 8-bit A/D, D/A..................................597
 68008 execution times and timing
 diagram..600
 25120 write-only memory................................605
C Big Picture: Schematic of lab
 microcomputer..606
D Pinouts..608

Index..612
Laboratory Exercises *(a more detailed listing)*

PART I: ANALOG LABS

Lab 1. **DC Circuits**
- Ohm's law; A Nonlinear device; The diode; Voltage divider; Thevenin model; Oscilloscope; AC voltage divider

Lab 2. **Capacitors**
- RC circuit; Differentiator; Integrator; Low-pass filter; High-pass filter; Filter example I; Filter example II; Blocking capacitor; LC filter

Lab 3. **Diodes**
- LC resonant circuit; Confirming Fourier series; Half-wave rectifier; Full-wave bridge rectifier; Ripple; Signal diodes; Diode clamp; Diode limiter; Impedances of test instruments

Lab 4. **Transistors I**
- Transistor junctions are diodes; Emitter follower; Transistor current gain; Current source; Common emitter amplifier; Transistor switch

Lab 5. **Transistors II**
- Dynamic diode curve tracer; Grounded emitter amplifier; Current mirror; Ebers-Moll equation; Biasing: good & bad; Push-Pull

Lab 6. **Transistors III**
- Differential amplifier; Bootstrap; Miller effect; Darlington; Superbeta

Lab 7. **Field Effect Transistors I**
- FET characteristics; FET current sources; Source follower; FET as Voltage-controlled resistance; Amplitude modulation; 'Radio broadcast'

Lab 8. **Op Amps I**
- Op-amp open-loop gain; Inverting amplifier; Non-inverting amplifier; Follower; Current source; Current-to-voltage converter; Summing amplifier; Push-pull buffer

Lab 9. **Op Amps II**
- Op-amp limitations; AC amplifier; Integrator; Differentiator; Active rectifier; Active clamp

Lab 10. **Oscillators**
- Comparator; Schmitt trigger; IC relaxation oscillator; Sawtooth wave oscillator; Voltage-controlled oscillator; Wien bridge sine oscillator; Unwanted oscillations: discrete follower & op amp stability problems

Lab 11. **Field Effect Transistors II**
- Analog switch characteristics; Applications: chopper circuit; sample-&-hold; switched-capacitor filters; negative voltage from positive

Lab 12. **Power Supplies**
- The 723 regulator; Three-terminal fixed regulator; Three-terminal adjustable regulator; Three-terminal regulator as current source; Voltage reference; 'Crowbar' clamp
PART II: DIGITAL LABS

Lab 13. Gates
Logic probe; IC gates: TTL & CMOS; Logic functions with NANDs; Gate innards: TTL; CMOS: CMOS NOT, NAND, 3-state

Lab 14. Flip-Flops
Latch; D flop; J-K flop; Ripple counter; Synchronous counter; Shift-register; Digitally-timed one-shot

Lab 15. Counters
8-bit counter; Cascading; Load from keypad; Programmable divide-by-n counter; Period meter; Capacitance meter

Lab 16. Memory; State Machines
RAM; Divide-by-3 (your design); Memory-based state machines: Single-loop; External control added

Lab 17. A/D; Phase-Locked Loop: Two Digital Feedback Machines:
D/A; A/D: Slow motion; Full speed; Displaying search tree; Speed limit; Latching output; Phase-Locked Loop: frequency multiplier.

Lab 18. μ1: Adding CPU
Clock; CPU preliminary test; Fixing busgrant*; Memory enable logic; Memory write logic; Single-step; Test program; Full-speed: timing diagram

Lab 19. μ2: I/O: Output: First small programs
Battery backup; Power-fail detector; I/O decoder; Data displays; Timing program

Lab 20. μ3: Input: More small programs
Delay as subroutine; Improved delay routines; Input hardware: Data input hardware; Input/output program; Ready signal; I/O program with enter/ready function; Decimal arithmetic

Lab 21. μ4: A/D <-> D/A
A/D-D/A wiring details; Programs: confirming that D/A, A/D work; In & Out; Invert, rectify, low-pass;

Lab 22. μ5: ‘Storage scope;’ Interrupts & other ‘Exceptions’
‘Storage scope;’ keyboard control;
Exceptions: A software exception: illegal; Interrupt: hardware to request interrupt; Program: main & service routine; NMI; Applying interrupts

Register-Check: a debugging aid (optional program; install if you choose to)

Lab 23. Applying Your Microcomputer (‘Toy Catalog’)
X-Y scope displays; Light-pen; Voice output; Driving a stepper motor; Games; Sound sampling/generation