Performance of Large Area Micromegas Detectors for the ATLAS Muon Spectrometer Upgrade Project

Philipp Lösel, on behalf of the ATLAS Muon Collaboration

Abstract—32 high-rate capable SM2 Micromegas quadruplets are built, for the upgrade of the Small Wheels of the ATLAS muon spectrometer. The cathodes and strip-anodes of the 2 m² quadruplets consist of stable honeycomb sandwiches with a requested planarity better than 80 µm. The qualification of full-size SM2 quadruplets will be performed in the Munich Cosmic Ray Measurement Facility (CRF). Two fully working 4 m × 2.2 m ATLAS drift-tube chambers provide muon tracking, a RD51 SRS based data acquisition system provides readout of all 12288 electronic channels using 96 APV25 front-end boards. The goal is to measure the homogeneity of pulse-height and efficiency and to determine the planarity of the sandwich planes and the positions of the readout-strips. This has been pioneered by studying a 102 × 92 cm² Micromegas chamber with similar readout pitch in the CRF using the TPC-like analysis method. At trigger rates above 100 Hz data taking takes only a few days for sufficient statistics. Shifts of readout planes and bulging due to overpressure were resolved with an accuracy better than 50 µm, single plane angular resolution with an accuracy of about 5° and spatial resolution of 300 µm in agreement with 83 µm for the same detector at high energy 120 GeV pion beams when taking into account the multiple scattering of the low energy cosmic muons.

Index Terms—ATLAS, Muon Spectrometer Upgrade, New Small Wheel, resistive strip Micromegas, SM2, Cosmic Ray Measurement Facility

I. INTRODUCTION

Due to the high luminosity upgrade of the Large Hadron Collider (LHC) it will reach for Run 4 luminosities up to seven times above the design luminosity. To process the increased data volume the detectors of the inner end-cap region of the ATLAS Muon Spectrometer (Small Wheel) have to be upgraded as well [1]. The Monitored Drift Tube chambers (MDT) presently used in the outer radius of the Small Wheel will have an efficiency loss to below 90% at design luminosity and below 60% at two times the design luminosity (see Fig. 1)[4]. Additionally the New Small Wheel will be fully integrated in the muon trigger system to suppress fake triggers. Therefore the future detectors have to be trigger and high rate capable. Small-Strip Thin Gap Chambers (sTGC) [3] and MICROMEmsh GAseous Structures (Micromegas) [2] were chosen.

The New Small Wheel will have a disk-like design with eight small and eight large sectors (see Fig. 2). Each sector is subdivided in two modules consisting of two Micromegas quadruplets with main emphasis on precision tracking sandwiched by two sTGC quadruplets with main emphasis on triggering. Both detector technologies are capable of tracking and triggering. Thus each module has in total 16 active layers [4].

II. CONSTRUCTION OF SM2 QUADRUPLETS

The Micromegas quadruplets of the outer part of the small sector are constructed by a consortium of four German University groups. We will focus on these Micromegas quadruplets (SM2), starting with a small introduction to the working principle of Micromegas.
A. Working Principle of Micromegas

Each Micromegas of the SM2 quadruplet consist of three planar structures a cathode, a grounded micro-mesh and a resistive micro-strip anode [5]. Thus it is divided in drift and amplification regions. A traversing muon ionizes the gas mixture (Ar:CO₂ 93:7 vol%) in the drift region. The produced electrons drift to the amplification region, undergo gas amplification and are collected on the resistive strips. 

There are two main position reconstruction methods, centroid and μTPC. The centroid method is the charge weighted mean of the strips (indicated with the red dot in Fig. 3) and the μTPC method is a Time-Projection-Chamber-like method using the drift time of the electrons to reconstruct the incident angle in a single plane. With the reconstructed angle the center of the track can be reconstructed and thus the position of the traversing muon. For this analysis only the centroid method was used.

B. Design of the Micromegas Quadruplet

Each Micromegas quadruplet consists of three drift and two readout panels (see Fig. 4). A panel is a stiffening structure of aluminum bars and honeycomb sandwiched by printed circuit boards (PCB). The surface of the PCBs is either used as drift cathode or as anode-strip structure and the gas volumes between the panels are the active Micromegas layers.

C. Global and Relative Alignment of the PCBs

As industrially made PCBs are limited in size each plane of the panels have to be constructed of three PCBs. The alignment of these PCBs has to be very accurate within 20 μm, at least for the readout panels. To achieve this accuracy the PCBs have to be aligned before the gluing process. This is done with a precision alignment frame shown in fig 5. One part of the alignment frame, the reference frame, is permanently installed on a granite table. It has two external precision pins for the global alignment which define the position of the panels on the granite table. The six 8 mm precision pins on the second part of the alignment frame provide alignment for the three readout boards. Precision markers on the readout boards are produced in the same lithographic step as the readout strip. Precision washers are glued on top of these markers with an accuracy of about 5 μm by use of a telecentric camera. The precision pins fit exactly into the washer.

D. Panel Construction in a Two Step Gluing Process

As industrially made PCBs are limited in size each plane of the panels have to be constructed of three PCBs. The alignment of these PCBs has to be very accurate within 20 μm, at least for the readout panels. To achieve this accuracy the PCBs have to be aligned before the gluing process. This is done with a precision alignment frame shown in fig 5. One part of the alignment frame, the reference frame, is permanently installed on a granite table. It has two external precision pins for the global alignment which define the position of the panels on the granite table. The six 8 mm precision pins on the second part of the alignment frame provide alignment for the three readout boards. Precision markers on the readout boards are produced in the same lithographic step as the readout strips and reference with high accuracy the position of the strips. A relative alignment of the PCBs with an accuracy of better than 20 μm is expected.

Figure 3. Scheme of the working principle of a Micromegas consisting of three planes, a cathode, a grounded stainless steel micro-mesh and an anode strip structure. A traversing muon (green) ionizes the gas in the drift region. The electrons produced by this process build avalanches in the amplification region and are read out on the strip structure.

Figure 4. Cross section of three drift and two readout panels assembled to a Micromegas quadruplet.

Figure 5. The alignment frame for the readout boards of the SM2 module. An external permanently installed reference frame with two precision pins (green) define the position of the readout panels on the granite table. Six 8 mm precision pins provide alignment for the three readout boards of the SM2 module. The pins fit exactly into precision washers (red) which are glued concentrically on top of precision markers. These markers are produced in the same lithographic step as the readout strips and reference with high accuracy the position of the strips. A relative alignment of the PCBs with an accuracy of better than 20 μm is expected.

Figure 6. Schematic drawing of the two step gluing process. In the first step the PCB is sucked to the granite table and the aluminum frames and honeycomb are glued on top. After curing in the second step a second PCB is sucked to the granite table. The half-panel produced in the first step is sucked on the stiffback and placed on top of the second PCB. Precision balls are used to define the distance between the PCBs.
The two steps of the gluing process are shown in Figure 6. After the alignment of the three PCBs they are sucked onto the granite table for the first gluing step. The precision of the surface of the granite table with a flatness better than 6 \( \mu \)m will be transferred to the sandwich panel. Glue is distributed on the PCBs and the aluminum bars and honeycomb are placed on top. After about 10 hours of curing the half-panel can be removed and a second set of PCBs is aligned and sucked to the granite table. Meanwhile the first half-panel is sucked to a stiffback, a planar rigid structure with a surface RMS of 14 \( \mu \)m which weighs only 30 kg. After the glue distribution on the second set of PCBs the half-panel mounted on the stiffback is placed on top. Precision balls are placed between granite table and stiffback to obtain an exact thickness of the panel. The panel is finished after a second 10 hours curing time. Drift and readout panels have a very similar production procedure, except for the precise relative alignment of the PCBs on the readout panel. This is not necessary for drift panels.

**E. Planarity Measurement of a SM2 Drift Panel**

After the gluing process the surface of the panels is measured with a triangulation distance laser sensor mounted on a Computer Measurement Machine (CMM). The result of one topology measurement is shown in Figure 7 with an RMS of 22 \( \mu \)m with respect to the best fit plane. This fulfills the ATLAS requirement of 30 \( \mu \)m RMS at a min-max value of 120 \( \mu \)m.

**F. Interconnections in SM2 Quadruplets**

Due to the large area of the quadruplets and 2 mbar overpressure in the gas volume the outer layers of the Micromegas quadruplets would have deformations of the drift region above 1 mm. To avoid this effect six interconnections are integrated in the quadruplets. Figure 8 shows the result of a deformation simulation with six interconnections. With a maximum deformation of only 51 \( \mu \)m from true planarity the deformation is well within the ATLAS requirements.

**III. QUALITY CONTROL OF SM2 QUADRUPLETS WITH COSMIC MUONS**

In the following section we will concentrate on the aspects which can be measured in the LMU Cosmic Ray Measurement Facility (CRF) using muon reference tracks.

**A. Cosmic Ray Measurement Facility, LMU**

The CRF is equipped with two 4\( \times \)2.2 m\(^2\) ATLAS MDT chambers for precision muon reference tracking sandwiched by two trigger hodoscopes with sub-ns time resolution (see Fig. 9). They provide additional position information along the wires of the MDTs. Due to the active area of about 9 m\(^2\) and an angular acceptance between -30\(^\circ\) and +30\(^\circ\) track analysis provides not only information of strip positions within the readout plane but also information on the perpendicular dimension and the distance between active planes. Thus the CRF is well suited for the investigation of large area Micromegas.
with 16 APV25 front-end boards [8][9]. These 16 APV25 boards, together with a segmentation along the strip with the information from the trigger hodoscopes in ten segments, are used to subdivide the detector in 160 identical partitions of about $60 \times 100 \text{mm}^2$ to enable detector alignment, determine deformations and deviations of strip locations and to allow for information on homogeneity in efficiency and pulse height (see Fig. 10).

![Diagram of the detector](image)

**Figure 10.** Scheme of the 102 $\times$ 92 cm$^2$ Micromegas under test consisting of the readout boards with its subdivision in 160 partitions by 16 APV25 front-end boards and 10 positions along the strips obtained from the trigger hodoscope information.

**B. Deformation of Drift Region**

The muon reference tracks are used for the detector alignment relative to the MDTs as well as for calibration of the strip positions.

Using inclined muon tracks the position perpendicular to the detector can be determined. Figure 11 shows a scheme of the reconstruction of the $z$ position obtained from the dependence on the track angle of the residual of reconstructed $y$ position with respect to the MDT reference track. Due to the small overpressure of about 10 mbar (in ATLAS this will only be about 2 mbar) there is a blow-up of the detector. By construction the base plate is more stiff than the cathode and so the deformation occurs only in one direction. The reconstructed $z$ position is always in the middle between base plate and cathode.

![Diagram of deformation](image)

**Figure 11.** Schematic drawing of the deformation of the drift region due to a small overpressure and the reconstructed detector layer using inclined tracks.

Figure 12 shows the measured deformation of 0.8 mm in maximum. This leads to a total blow-up of about 1.6 mm at the cathode. The interconnections will avoid this blow-up in the SM2 quadruplets.

![Deformation measurement](image)

**Figure 12.** Measured deformation of the drift region with a maximum deviation of 0.8 mm in the reconstructed plane, which leads to a total blow-up of 1.6 mm.

**C. Calibration of Strip Positions**

Using perpendicular muon tracks the strip positions can be calibrated. As mentioned before the prototype detector consists of two readout boards the gluing of which did not use alignment tools different to the SM2 construction. The position of the readout strips is measured with an accuracy of 10-15 µm. Figure 13 shows this measurement. A shift from 100 µm to 450 µm between the readout boards can be seen. This is schematically displayed in Figure 14. The rotation between the PCBs is about 0.1°.

![Rotation measurement](image)

**Figure 13.** Measured shift and rotation between the two readout boards of the Micromegas under test with perpendicular tracks.

![Rotation scheme](image)

**Figure 14.** Scheme of the measured deviation between the two readout boards from 100 µm to 450 µm.
IV. CONCLUSION

We presented the principle of the construction of SM2 quadruplets for the ATLAS NSW Upgrade Project. The two step gluing process on a granite table with a flatness better than 6 µm fulfills the accurate mechanical requirement. Each panel surface consists of 3 printed circuit boards which are aligned better than 20 µm in precision direction using a precise alignment frame. To avoid a deformation of the drift region due to 2 mbar overpressure six interconnects are included in the SM2 quadruplets. The first manufactured drift panels fulfill the strict mechanical requirements with a planarity of 22 µm.

The quality control of the SM2 quadruplets in the Cosmic Ray Measurement Facility (CRF) using reference muon tracks includes measurements of the homogeneity of efficiency and pulse height, deformation of the drift region and calibration of the strip positions. A 1 m² prototype Micromegas consisting of two readout boards was installed in the CRF to establish a procedure for the quality control. The measurement has shown a deformation of the drift region with a maximum deviation of 1.6 mm at the cathode due to about 10 mbar overpressure. The calibration of the strip position is feasible with an accuracy of 10-15 µm. A shift and rotation between the two readout boards due to the insufficient alignment during the gluing process was observed. The prototype detector shows a good uniformity of the efficiency within 1 % and of the pulse height within 20 %.

The LMU CRF is well suited to perform quality control of assembled SM2 quadruplets. A full set of electronics based on APV25 chips for the readout of all 12288 channels of a SM2 module is available.

ACKNOWLEDGMENT

We acknowledge the support by the DFG Excellence Cluster ‘Origin and Structure of the Universe’.

REFERENCES

[7] NSW Collaboration, ANSYS simulation