Observation of long-range elliptic anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp collisions with the ATLAS detector

Mingliang Zhou (on behalf of the ATLAS collaboration)

Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

ATLAS has measured two-particle angular correlations in $\sqrt{s} = 13$ and 2.76 TeV pp collisions at the LHC. The well-known "ridge" is observed in high-multiplicity events. Per-trigger-particle yields, $Y(\Delta\phi)$, are found to be consistent with a linear combination of the per-trigger-yield measured with <20 reconstructed tracks, and a constant combinatoric contribution modulated by $\cos(2\Delta\phi)$. The fitted Fourier coefficient v_2, exhibits factorization, suggesting that the ridge results from per-event $\cos(2\phi)$ modulation of the single-particle distribution with Fourier coefficient v_2. They are found to be weakly dependent on multiplicity and to have a p_T dependence similar to that measured in $p+Pb$ and $Pb+Pb$ collisions. The v_2 values in the 13 and 2.76 TeV are consistent within uncertainties. These results suggest that the ridge in pp collisions arises from the same or similar underlying physics as observed in $p+Pb$ collisions, and that the dynamics responsible for the ridge has no strong \sqrt{s} dependence.

Keywords: Hadron-Hadron Scattering, Particle Correlations

1. Introduction

Measurement of two-particle angular correlations in Pb+Pb collisions [1] at the LHC showed an enhancement of particle pairs at small relative azimuthal-angle, $\Delta\phi$, that extends over a wide range of pseudorapidity differences, $\Delta\eta$, which is often referred to as "ridge". The ridge has also been observed in $p+Pb$ [2] and high-multiplicity pp [3]. The ridge in $p+Pb$ has been found to result from a global sinusoidal modulation of the per-event single-particle azimuthal-angle distributions [4, 5]. While many theoretical interpretation of the ridge, including those based on hydrodynamics [6, 7], saturation [8, 9], or other mechanisms [10], have been, or could be applied to pp and $p+Pb$, it has not been demonstrated that the ridge in pp results from single-particle azimuthal anisotropies. Testing whether ridge in pp and $p+Pb$ arise from the same underlying features of single-particle distributions may provide insights into the physics responsible for the phenomena. Separately, a study of the \sqrt{s} dependence of the ridge in pp collisions may help distinguish competing between theories.

2. Analysis Details

This analysis uses 14 nb$^{-1}$ of 13 TeV and 4.0 pb$^{-1}$ 2.76 TeV data collected by ATLAS during Run 2 and Run 1, using ATLAS inner detector ($|\eta| < 2.5$), minimum-bias trigger scintillators and forward calorimeter [11]. To enhance the statistics for high-multiplicity events, high-multiplicity triggers (HMT) are applied...
and they are only used where their multiplicity selection is more than 90% efficient. The measured charge-particle multiplicity, \(N_{\text{ch}}^{\text{rec}} \), is defined as the number of tracks having \(p_T > 0.4 \text{ GeV} \) and associated with the primary vertex.

The two particle angular correlation function is defined in previous ATLAS measurements [1]. The long-range component of the correlation function \(Y(\Delta \phi) \), per-trigger-particle yields, is defined as:

\[
Y(\Delta \phi) = \left(\frac{\int B(\Delta \phi) d\Delta \phi}{N^0 \int d\Delta \phi} \right) C(\Delta \phi)
\]

(1)

where \(N^0 \) denotes the trigger particles and \(C(\Delta \phi) \) is obtained by integrating the numerator and denominator of \(C(\Delta \eta, \Delta \phi) \) over \(2 < |\Delta \eta| < 5 \). The per-trigger-particle yield shows a substantial “pedestal” of uncorrected pairs. A standard approach for estimating the level of the combinatoric background is the Zero-Yield At Minimum (ZYAM) procedure, which underestimates the yield associated with the sinusoidal modulation of the pair distribution.

For better estimation of ridge yield associated with the harmonic modulation of the pair distribution, \(Y^{\text{cent}}(\Delta \phi) \) from “central” collisions could be decomposed into a superposition of a “peripheral” \(Y^{\text{periph}}(\Delta \phi) \) scaled up by a multiplicative factor \(F \) and ridge yield \(Y^{\text{ridge}}(\Delta \phi) \):

\[
Y^{\text{cent}} = F Y^{\text{periph}} + Y^{\text{ridge}}
\]

(2)

where factor \(F \) could be determined by scaling jet-yield in the near-side, as described in ATLAS previous \(p+\text{Pb} \) ridge analysis [5]. In this analysis, \(F \) value is instead determined by a template fitting method as described below, which gives consistent \(F \) values with previous jet-yield scaling method. Both methods assume that the shape of away-side jet is independent of multiplicity.

To be more specific, the peripheral per-trigger-particle yield \(Y^{\text{periph}} \) is decomposed as:

\[
Y^{\text{periph}} = N_0^{\text{periph}} + N_0^{\text{periph}} v_{n,n}^{\text{periph}} \cos(n\Delta \phi) + Y^{\text{periph}}_{\text{jet}}
\]

(3)

where first term \(N_0^{\text{periph}} \) represents uncorrelated pairs, or the pedestal, which could be either included or excluded in the template-fitting. Second term is the ridge yield in peripheral collisions, with \(v_{n,n} \) as one of the fit coefficients. Expand \(Y^{\text{cent}} \) in the same way as Eq. 3 and denote \(F N_0^{\text{periph}} / N_0^{\text{cent}} \) as \(\alpha \), the “measured” long-range correlation \(v_{n,n}^{\text{ridge}} \) is:

\[
v_{n,n}^{\text{ridge}} = \frac{v_{n,n}^{\text{periph}} - \alpha v_{n,n}^{\text{periph}}}{1 - \alpha}
\]

(Include pedestal)

(4)

\[
v_{n,n}^{\text{ridge}} = \frac{v_{n,n}^{\text{periph}}}{1 - \alpha}
\]

(Exclude pedestal)

(5)

Fig. 1. Left panel: The \(N_{\text{rec}}^{\text{ch}} \) dependence of \(v_2 \) in 13 TeV data for \(0.5 < p_T < 5.0 \text{ GeV} \) for three different choices of the peripheral multiplicity interval, \(N_{\text{ch}}^{\text{periph}} \). Right panel: Similar plot but with the pedestal, \(Y^{\text{periph}}(0) \), subtracted from \(Y^{\text{periph}}(\Delta \phi) \) when performing the template fits. Taken from Ref. [12].
where v_{cent} and v_{periph} are the “true” long-range correlations in central and peripheral collisions respectively.

Whether including the pedestal or not only change ridge yield by a scale factor $1 - \alpha$. If correct v_{cent} has a weak multiplicity dependence, the measured v_{ridge} will recover the correct v_{cent} when the pedestal is included. In this analysis, including the pedestal is the default method.

To test the sensitivity of the results due to the dijet shape changes, the analysis was repeated using $N_{\text{ch}}^{\text{rec}} < 5$, $N_{\text{ch}}^{\text{rec}} < 10$ and $10 \leq N_{\text{ch}}^{\text{rec}} < 20$ intervals to form Y_{periph}. The calculated v_2 values (will be introduced later, for now it could be treated as the ridge yield) are shown in Fig.1: when the pedestal is included, three different peripheral references give consistent results, meaning the measurements using template-fitting are stable regardless of the choice of peripheral references.

3. Results and Discussions

![ATLAS](13 TeV)

Fig. 2. Two-particle correlation functions, $C(\Delta \eta, \Delta \phi)$, in 13 TeV pp collisions in $10 \leq N_{\text{ch}}^{\text{rec}} < 30$ (left) and $N_{\text{ch}}^{\text{rec}} \geq 120$ (right). The distributions have been truncated to suppress the peak at $\Delta \eta = \Delta \phi = 0$. Taken from Ref [12].

Examples of correlation functions in the 13 TeV data are shown in Fig. 2 for $10 \leq N_{\text{ch}}^{\text{rec}} < 30$ (left) and $N_{\text{ch}}^{\text{rec}} \geq 120$ (right), respectively. The strong peak at $\Delta \eta = \Delta \phi = 0$ arises primarily from jets and the enhancement extending over a wide $\Delta \eta$ range centered at $\Delta \phi = \pi$ results primarily from dijets. In low-multiplicity, the long-range correlation shape is concaved-up on near-side, while in high-multiplicity, a ridge begins to develop as an enhancement extending over the wide $\Delta \eta$ range.

![ATLAS](13 TeV)

Fig. 3. Per-trigger-particle yields, $Y(\Delta \phi)$, with different components of the template for two $N_{\text{ch}}^{\text{rec}}$ intervals $40 - 50$ (left) and ≥ 120 (right). The scaled Y_{periph} shifted up by G are shown with open points; the $Y_{\text{periph}}(\Delta \phi)$ functions shifted up by $F Y_{\text{periph}}(0)$ are shown with the dashed lines; and the full fit function is shown by the solid curve. Taken from Ref [12].

The results of the template-fitting are shown in Fig. 3 for two $N_{\text{ch}}^{\text{rec}}$ intervals in 13 TeV pp collisions. The template-fitting simultaneously describes the ridge, which arises from an interplay of the concave Y_{periph}
and the cosine function, the height of the peak in the $Y(\Delta \phi)$ at $\Delta \phi \sim \pi$, and the narrowing of the peak which results from a negative contribution of the $2v_{2,2} \cos(2\Delta \phi)$ term in the region near $\Delta \phi = \pi/2$.

![Graph showing correlation functions](image)

Fig. 4. Measured $v_{2,2}$ (top) and v_2 (middle) values versus N_{ch}^{rec} for different p_T^{ch} intervals for 2.76 (left) and 13 TeV (right) data. Measured v_2 values versus p_T^{ch} (bottom) for 13 and 2.76 TeV data for the $50 \leq N_{ch}^{rec} < 60$ interval (left) and for three N_{ch}^{rec} intervals in the 13 TeV data (right). Taken from Ref [12].

If the two-particle angular correlation arises from modulation of single-particle ϕ distribution, then $v_{2,2}$ should factorized such that $v_{2,2}(p_T^1, p_T^2) = v_2(p_T^1) v_2(p_T^2)$, where v_2 is the $\cos(2\phi)$ Fourier coefficient of the single-particle anisotropy. In other words, if factorization holds, the $v_2(p_T)$ should be independent of p_T, which is tested in Fig. 4 (top and middle): the three sets of v_2 values agree within uncertainties, indicating that $v_{2,2}$ factorizes.

As shown in Fig. 4, the measured v_2 have a very weak dependence of N_{ch}^{rec} and are consistent between two energies within uncertainties. The p_T dependence of v_2 (bottom left) is similar for both energies to that previously measured in $p+$Pb and Pb+Pb collisions: it increases with p_T at low p_T, reaches maximum between 2 and 3 GeV, and then decreases at higher p_T.

4. Summary

We present two-particle correlations in $\sqrt{s} = 13$ and 2.76 TeV pp collisions. The correlation functions show a ridge whose strength increases with multiplicity. A new template fitting procedure shows that the per-trigger-particle yields for $|\Delta \eta| > 2$ are well described by a superposition of the scaled yields measured in a low-multiplicity and a constant modulated by $\cos(2\Delta \phi)$. The extracted Fourier coefficients $v_{2,2}$ exhibit factorization and v_2 of the single-particle modulation are N_{ch}^{rec}-independent and agree between 2.76 and 13 TeV within uncertainties. They follow a p_T trend similar to that observed in $p+$Pb and Pb+Pb collisions. These results suggest that the ridges in pp and $p+$Pb collisions arise from a similar physical mechanism which does not have a strong \sqrt{s} dependence.
References