Run-2 ATLAS Trigger and Detector Performance

Frank Winklmeier
University of Oregon

on behalf of the ATLAS Collaboration

https://indico.cern.ch/e/hep2016

Valparaiso, Chile
8th January 2016
Content

- Detector and Trigger performance
 - Upgrades done during Long Shutdown 1 (LS1, Feb’13 – Apr’15)
 - Detector Performance in 2015
 - Trigger Performance in 2015
 - Outlook for 2016

- Physics and Upgrade covered in
 - Wednesday
 - Hernan Wahlberg, First Atlas Results from Run2
 - Saturday
 - Giulio Aielli, ATLAS Upgrades for the Next Decades
 - + many other talks in parallel sessions
The ATLAS Detector

- Tile calorimeters
- LAr hadronic end-cap and forward calorimeters
- Pixel detector
- LAr electromagnetic calorimeters
- Transition radiation tracker
- Semiconductor tracker
- Solenoid magnet
- Muon chambers
- Toroid magnets
The ATLAS Detector

- Repairs and upgrades in all detectors during LS1
 - Prepare all detectors for 100 kHz readout rate (75 kHz in run-1)
 - Additional Pixel layer (IBL) and new beam pipe
 - Gas leak repairs for Transition Radiation Tracker (TRT)
 - Replacement of power supplies for LAr and Tile calorimeter
 - Repair of broken front-end electronics in all systems
 - Install remaining and new muon chambers
The ATLAS Detector

- Repairs and upgrades in all detectors during LS1
 - Prepare all detectors for 100 kHz readout rate (75 kHz in run-1)
 - Additional Pixel layer (IBL) and new beam pipe
 - Gas leak repairs for Transition Radiation Tracker (TRT)
 - Replacement of power supplies for LAr and Tile calorimeter
 - Repair of broken front-end electronics in all systems
 - Install remaining and new muon chambers

- Fraction of operational channels

ATLAS Detector Status

<table>
<thead>
<tr>
<th>Module</th>
<th>Run-1</th>
<th>Run-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 Muon Endcap</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>L1 Muon Barrel</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>L1 Calo</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>TGC</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>RPC</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>CSC</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>MDT</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>LAr Fwd</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>LAr HEC</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>Tile</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>LAr</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>TRT</td>
<td>96%</td>
<td>100%</td>
</tr>
<tr>
<td>SCT</td>
<td>96%</td>
<td>100%</td>
</tr>
<tr>
<td>Pixels</td>
<td>96%</td>
<td>100%</td>
</tr>
</tbody>
</table>
A new era for proton-proton collisions

A high-mass dijet event. This event was collected in September 2015: the two central high-\(p_T\) jets have an invariant mass of 8.8 \(\text{TeV}\), the highest-\(p_T\) jet has a \(p_T\) of 810 GeV, and the subleading jet has a \(p_T\) of 750 GeV. The missing ET for this event is 60 GeV.
A new era for proton-proton collisions

Run-1 vs Run-2

<table>
<thead>
<tr>
<th></th>
<th>Run-1 (8TeV)</th>
<th>Run-2 (13TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak lumi [cm(^{-2}) s(^{-1})]</td>
<td>7.7 x 10(^{33})</td>
<td>5.1 x 10(^{33})</td>
</tr>
<tr>
<td>mean pileup</td>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>Integrated lumi [fb(^{-1})]</td>
<td>22.8</td>
<td>4.2</td>
</tr>
<tr>
<td>Data-taking eff.</td>
<td>93%</td>
<td>92%</td>
</tr>
</tbody>
</table>

ATLAS pp 25ns run: August-November 2015

<table>
<thead>
<tr>
<th>Inner Tracker</th>
<th>Calorimeters</th>
<th>Muon Spectrometer</th>
<th>Magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>SCT</td>
<td>TRT</td>
<td>Solenoid</td>
</tr>
<tr>
<td>LAr</td>
<td>Tile</td>
<td>MDT</td>
<td>Toroid</td>
</tr>
<tr>
<td>93.5</td>
<td>99.4</td>
<td>98.3</td>
<td>100</td>
</tr>
<tr>
<td>99.4</td>
<td>100</td>
<td>100</td>
<td>97.8</td>
</tr>
</tbody>
</table>

All Good for physics: 87.1% (3.2 fb\(^{-1}\))

Luminosity weighted relative detector uptime and good data quality (DQ) efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at \(\sqrt{s}=13\) TeV between August-November 2015, corresponding to an integrated luminosity of 3.7 fb\(^{-1}\). The lower DQ efficiency in the pixel detector is due to the IBL being turned off for two runs, corresponding to 0.2 fb\(^{-1}\). Analyses that don’t rely on the IBL can use those runs and thus use 3.4 fb\(^{-1}\) with a corresponding DQ efficiency of 93.1%.
Heavy-Ion data-taking
Heavy-Ion data-taking

Recorded 0.68 nb\(^{-1}\)
(expected 0.3-0.5 nb\(^{-1}\))

ATLAS Online Luminosity
\(|s_{NN}| = 5.0\) TeV

Total Delivered: 703.7 ub\(^{-1}\)
Total Recorded: 676.8 ub\(^{-1}\)

Data-taking eff.
96 %

Run: 286665
Event: 419161
2015-11-25 11:12:50 CEST
Inner Detector – Pixel, SCT and TRT

- **Pixel**
 - Operating smoothly
 - Overall status of Pixel improved compared to end of Run-1
 - New innermost layer (IBL) → see next slides

- **Silicon Strip Tracker (SCT)**
 - Stable and reliable throughout 2015
 - Performance comparable with Run-1
 - Very small drop in hit efficiency for 25ns beams
 - This is expected for bunches within a train
 - Intrinsic hit efficiency can be seen in first bunch
 - No impact on tracking performance

- **Transition Radiation Tracker (TRT)**
 - Proved to sustain 100 KHz at 50% occupancy
 - Still suffering from gas leaks
 - Currently ~150 liters per day
 - Xe gas replaced by (cheaper) Ar in the worst gas loops
 - Negligible impact on electron identification
 - For HI run changed full detector to Ar gas mix
IBL – Insertable B-Layer

- **New innermost layer for the ATLAS Pixel detector**
 - Increases the number of pixel layers from 3 → 4
 - 6M additional channels, 50×250 μm² pixel size (compared to 50×400 for Pixel)
 - 8×40 μm² resolution
 - 3.3 cm from the beam line including a new (smaller) beam pipe
 - Required complete removal of the ATLAS Pixel volume during Long Shutdown 1
 - Provides better tracking for ATLAS
 - But of course also some operational issues as with any new detector
IBL – Front-End current drift

- Increase of FE current observed during data-taking
 - Stopped IBL for 2 days in October for investigations

- Effect is due to irradiation
 - Understood to be a N-MOS transistor leakage due to defects built-up at the Silicon Oxide (STI) interface and cumulated by ionizing dose
 - Lab test confirms that effect will significantly reduce after a few additional Mrad of irradiation
IBL – Mechanical Distortions

- **Distortions due to temperature variations**
 - Bowing of \(\sim 10\mu m/K\) observed during cosmic ray commissioning in early 2015
 - Under normal operations conditions temperature is stable within 0.2K
 - No impact on tracking performance
 - Became a problem with the current drifts of the previous slide

- **Run-by-run alignment**
 - Correction applied on a run-by-run basis before bulk reconstruction
 - No significant effects on impact parameter resolution are observed
 - Not easily possible in the High-Level Trigger
 - For the moment mitigating effect by applying larger error scaling
IBL – Performance

- **IBL significantly improves impact parameter resolution**
 - About a factor two gain in impact parameter resolution for low-pT tracks

- **Impact of IBL distortion**
 - No significant impact after alignment correction
Tracking Performance and Material

- Material map of the Pixel detector
 - Using hadronic interactions
 - Using photon conversions
 - Simulation updated with improved geometry

- Tracking efficiency
 - 90% (85%) efficient for Loose (Tight Primary) selections for tracks above 5 GeV
Calorimeters and Jet reconstruction

- **Very stable operations for both LAr and Tile calorimeter**
 - Good for physics: 99.4% (LAr) and 100% (Tile) based on Data Quality
 - LAr using 4 instead of 5 sample readout to achieve 100 kHz
 - Performing even better than during run-1

- **In-situ jet energy-scale with full 2015 dataset**
 - Agreement between data and MC better than 2% up to 3 TeV
E/\gamma\text{ reconstruction performance}

- **Electron ID**
 - Likelihood (LH) combining LAr shower shapes, tracking, track-cluster matching and TRT PID
 - LH improves background rejection by \(~50\%) compared to cut-based ID with the same efficiency

- **Photon ID**
 - Using cut-based selection

Electron efficiency from Z

![Electron efficiency from Z](image1)

Photon reconstruction (MC)

![Photon reconstruction (MC)](image2)

The lower efficiency in data than in MC mostly arises from a known mismodelling of calorimetric shower shapes in the GEANT detector simulation.
Tau reconstruction performance

- **Tau reconstruction**
 - Tau identification performed both at trigger and offline level using a multivariate discriminant combining calorimeter, tracking and lifetime observables [ATL-PHYS-PUB-2015-045]
 - Performance measured on $Z \rightarrow \tau\tau$ candidates
 - Good agreement between data and MC

![Tau BDT](ATL-PHYS-2015-1392)

![Z → ττ](ATL-PHYS-2015-1392)
Muon Detector and Performance

- **All Muon detectors operating well**
 - Readout operational at 100 kHz
 - Alignment already good to O(50μm) in the barrel and O(100μm) in the endcap

- **Performance studied with 2015 dataset**
 - Three main working points
 - Tight, medium, loose
 - Good agreement between data and MC
 - Remaining differences accounted for by scale factors

![Muon efficiency from Z](image1)

Muon efficiency from Z

![Muon efficiency from J/psi](image2)

Muon efficiency from Z and J/psi

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 3.3 fb$^{-1}$

Data / MC

- **FixedCutLoose**
 - Data
 - $Z \rightarrow \mu\mu$
 - $J/\psi \rightarrow \mu\mu$

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 3.3 fb$^{-1}$

Data / MC

- **Stat only**
- **Sys @ Stat**
Computing and Analysis

- **Grid utilized at full capacity**
 - Smooth operations
 - Running up to 200k jobs
 - Dominated by MC production

- **Tier0 reconstruction**
 - 15k jobs slots
 - Used for Grid jobs if not utilized by Tier0

- **Analysis dataset production**
 - New analysis model (xAOD) working extremely well
 - Producing O(100) analysis specific derived datasets
High-Level Trigger farm usage for Grid jobs

These are opportunistic resources. Data-taking, testing and commissioning always has priority!
Trigger Performance
Trigger environment in Run-2

- **LHC**
 - Energy increase 8→13 TeV results in **2-2.5 times** higher trigger rates
 - Peak luminosity increase 0.8→1.7e34 results in ~**2 times** higher trigger rates

- **Options to cope with increase in trigger rates**
 - Increase output rate → challenge for offline computing
 - Increase trigger thresholds → loose potentially interesting physics
 - Reduce fake (non-physics) triggers
 - Increase trigger rejection power → better hardware/software

- Will show some of the improvements on the next slides...
ATLAS Trigger/DAQ in Run-2

Level-1 Calo
- Preprocessor (nMCM)
 - Electron/Tau (CMX)
 - Jet/Energy (CMX)

Level-1 Muon
- Endcap sector logic
- Barrel sector logic

Central Trigger
- MUCTPI
- L1Topo
- CTP
 - CTPCORE
 - CTPOUT

High Level Trigger (HLT)
- Processors O(20k)

Fast TracKer (FTK)

Detector Read-Out
- FE
- ROD

DataFlow
- ReadOut System
- Data Collection Network
- Data Storage (SFO)

Region Of Interest
- ROI Requests

Event Data

Calorimeter detectors
- Tile/TGC
- Muon detectors

~30 MHz

1 kHz

100 kHz
ATLAS Trigger/DAQ in Run-2

Level-1 Calo
- Preprocessor (nMCM)
 - Electron/Tau (CMX)
 - Jet/Energy (CMX)

Level-1 Muon
- Endcap sector logic
- Barrel sector logic

Central Trigger
- MUCTPI
- L1Topo
- CTP
 - CTPCORE
 - CTPOUT

High Level Trigger (HLT)
- Processors O(20k)

DataFlow
- ReadOut System
 - Data Collection Network
- Data Storage (SFO)

Detector Read-Out
- FE
 - ROD

Data Collection Network
- ROI Requests
- Event Data
- Data Storage (SFO)

Region Of Interest
- ROI
- Level-1 Accept

Calorimeter detectors
- Tile/TGC
- Muon detectors

New or Improved for Run-2
- ~30 MHz
- 100 kHz
- 1 kHz
ATLAS Trigger/DAQ in Run-2

Merge of L2 and EF farms
- Simplification
- Dynamic resource sharing
- More flexible HLT algorithms
- Use offline algorithms where possible
ATLAS Trigger/DAQ in Run-2

Central Trigger Processor (CTP)
- More L1 Items (256 → 512)
- Many other improvements...

Level-1 Topological Trigger
- Allows for topological selections at L1 (angular cuts, invariant mass, combinations, ...)
- Crucial for maintaining low trigger thresholds at higher luminosities
- *Still under commissioning*
nMCM – new Multi-Chip Modules

- Major limitation during Run-1 were the high MET rates at the start of the bunch train (due to LAr pulse shape)
- nMCM allows for more flexible signal processing (ASIC→FPGA)
- Dynamic pedestal correction depending on position in bunch train resulting in dramatic rate reduction and linear lumi-scaling for MET triggers
New coincidences to reduce rate in muon endcap trigger due to fakes

- Tile D-layer and TGC (ongoing)
- TGC inner layer (ready)
Fast TracKer (FTK)
- Hardware track finder
- Using associate memory for pattern matching
- Operational for barrel by mid-2016

100 kHz
~30 MHz
1 kHz
Trigger Menu and Rates at 5e33

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Typical offline selection</th>
<th>Trigger Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Level-1 (GeV)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level-1 Peak Rate (kHz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = 5 \times 10^{33}$ cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>Single leptons</td>
<td>Single iso μ, $p_T > 21$ GeV</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Single e, $p_T > 25$ GeV</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Single μ, $p_T > 42$ GeV</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Single τ, $p_T > 90$ GeV</td>
<td>60</td>
</tr>
<tr>
<td>Two leptons</td>
<td>Two μ's, each $p_T > 11$ GeV</td>
<td>2×10</td>
</tr>
<tr>
<td></td>
<td>Two μ's, $p_T > 19,10$ GeV</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Two loose e's, each $p_T > 15$ GeV</td>
<td>2×10</td>
</tr>
<tr>
<td></td>
<td>One e & one μ, $p_T > 10,26$ GeV</td>
<td>20 (μ)</td>
</tr>
<tr>
<td></td>
<td>One loose e & one μ, $p_T > 19,15$ GeV</td>
<td>15, 10</td>
</tr>
<tr>
<td></td>
<td>Two τ's, $p_T > 40,30$ GeV</td>
<td>20, 12</td>
</tr>
<tr>
<td></td>
<td>One τ, one μ, $p_T > 30,15$ GeV</td>
<td>12, 10 (+jets)</td>
</tr>
<tr>
<td></td>
<td>One τ, one e, $p_T > 30,19$ GeV</td>
<td>12, 15 (+jets)</td>
</tr>
<tr>
<td>Three leptons</td>
<td>Three loose e's, $p_T > 19,11,11$ GeV</td>
<td>15, 2 \times 7</td>
</tr>
<tr>
<td></td>
<td>Three μ's, each $p_T > 8$ GeV</td>
<td>3 \times 6</td>
</tr>
<tr>
<td></td>
<td>Three μ's, $p_T > 19,2,6$ GeV</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Two μ's & one e, $p_T > 2 \times 11,14$ GeV</td>
<td>2 \times 10 (μ's)</td>
</tr>
<tr>
<td></td>
<td>Two loose e's & one μ, $p_T > 2 \times 11,11$ GeV</td>
<td>2 \times 8, 10</td>
</tr>
<tr>
<td>One photon</td>
<td>one γ, $p_T > 125$ GeV</td>
<td>22</td>
</tr>
<tr>
<td>Two photons</td>
<td>Two loose γ's, $p_T > 40,30$ GeV</td>
<td>2 \times 15</td>
</tr>
<tr>
<td></td>
<td>Two tight γ's, $p_T > 25,25$ GeV</td>
<td>2 \times 15</td>
</tr>
<tr>
<td>Single jet</td>
<td>Jet ($R = 0.4$), $p_T > 400$ GeV</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Jet ($R = 1.0$), $p_T > 400$ GeV</td>
<td>100</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>$E_T^{miss} > 180$ GeV</td>
<td>50</td>
</tr>
<tr>
<td>Multi-jets</td>
<td>Four jets, each $p_T > 95$ GeV</td>
<td>3 \times 40</td>
</tr>
<tr>
<td></td>
<td>Five jets, each $p_T > 70$ GeV</td>
<td>4 \times 20</td>
</tr>
<tr>
<td></td>
<td>Six jets, each $p_T > 55$ GeV</td>
<td>4 \times 15</td>
</tr>
<tr>
<td>b–jets</td>
<td>One loose b, $p_T > 235$ GeV</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Two medium b's, $p_T > 160,60$ GeV</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>One b & three jets, each $p_T > 75$ GeV</td>
<td>3 \times 25</td>
</tr>
<tr>
<td></td>
<td>Two b & two jets, each $p_T > 45$ GeV</td>
<td>3 \times 25</td>
</tr>
<tr>
<td>b–physics</td>
<td>Two μ's, $p_T > 6.4$ GeV</td>
<td>6, 4</td>
</tr>
<tr>
<td></td>
<td>plus dedicated b–physics selections</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
Trigger Menu and Rates at 5e33

- In total 400 L1 triggers and 1500 HLT triggers
 - Primary triggers, usually unprescaled
 - Support and background triggers, usually prescaled
 - Alternative triggers, using different algorithms
 - Backup triggers, using tighter selections
 - Calibration triggers, usually providing partially built events

- Aim was to keep primary physics triggers stable during 2015
 - Ensures continuity of trigger selection for physics analysis
 - At cost of slightly higher output rate than planned
Trigger Menu and Rates at 5e33

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Typical offline selection</th>
<th>Trigger Selection</th>
<th>Level-1 Peak Rate (kHz)</th>
<th>HLT Peak Rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Level-1 (GeV)</td>
<td>HLT (GeV)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$L = 5 \times 10^{33}$ cm$^{-2}$s$^{-1}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single leptons</td>
<td>Single iso μ, $p_T > 21$ GeV</td>
<td>15</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Single e, $p_T > 25$ GeV</td>
<td>20</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Single μ, $p_T > 42$ GeV</td>
<td>20</td>
<td>40</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Single τ, $p_T > 90$ GeV</td>
<td>60</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>Two leptons</td>
<td>Two μ's, each $p_T > 11$ GeV</td>
<td>2×10</td>
<td>2×10</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Two loose e's, each $p_T > 15$ GeV</td>
<td>2×10</td>
<td>2×12</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>One e & one μ, $p_T > 10, 26$ GeV</td>
<td>20 (μ)</td>
<td>7, 24</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>One loose e & one μ, $p_T > 19, 15$ GeV</td>
<td>15, 10</td>
<td>17, 14</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Two τ's, $p_T > 40, 30$ GeV</td>
<td>20, 12</td>
<td>35, 25</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>One τ, one μ, $p_T > 30, 15$ GeV</td>
<td>12, 10 (jets)</td>
<td>25, 14</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>One τ, one e, $p_T > 30, 19$ GeV</td>
<td>12, 15 (jets)</td>
<td>25, 17</td>
<td>1</td>
</tr>
<tr>
<td>Three leptons</td>
<td>Three loose e's, $p_T > 19, 11, 11$ GeV</td>
<td>15, 2 × 7</td>
<td>17, 2 × 9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Three μ's, each $p_T > 8$ GeV</td>
<td>3 × 6</td>
<td>3 × 6</td>
<td>< 0.1</td>
</tr>
<tr>
<td></td>
<td>Three μ's, $p_T > 19, 2 × 6$ GeV</td>
<td>15</td>
<td>18, 2 × 4</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Two μ's & one e, $p_T > 2 × 11, 14$ GeV</td>
<td>2×10 (μ's)</td>
<td>$2 \times 10, 12$</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Two loose e's & one μ, $p_T > 2 × 11, 11$ GeV</td>
<td>$2 \times 8, 10$</td>
<td>$2 \times 12, 10$</td>
<td>0.3</td>
</tr>
<tr>
<td>One photon</td>
<td>one γ, $p_T > 125$ GeV</td>
<td>22</td>
<td>120</td>
<td>8</td>
</tr>
<tr>
<td>Two photons</td>
<td>Two loose γ's, $p_T > 40, 30$ GeV</td>
<td>2 × 15</td>
<td>35, 25</td>
<td>1.5</td>
</tr>
<tr>
<td>Single jet</td>
<td>Jet $(R = 0.4)$, $p_T > 400$ GeV</td>
<td>100</td>
<td>360</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Jet $(R = 1.0)$, $p_T > 400$ GeV</td>
<td>100</td>
<td>360</td>
<td>0.9</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>$E_T^{miss} > 180$ GeV</td>
<td>50</td>
<td>70</td>
<td>0.7</td>
</tr>
<tr>
<td>Multi-jets</td>
<td>Four jets, each $p_T > 95$ GeV</td>
<td>3×40</td>
<td>4×85</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>Five jets, each $p_T > 70$ GeV</td>
<td>4 × 20</td>
<td>5 × 60</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>Six jets, each $p_T > 55$ GeV</td>
<td>4 × 15</td>
<td>6 × 45</td>
<td>1.0</td>
</tr>
<tr>
<td>b--jets</td>
<td>One loose b, $p_T > 235$ GeV</td>
<td>100</td>
<td>225</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Two medium b's, $p_T > 160, 60$ GeV</td>
<td>100</td>
<td>150, 50</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>One b & three jets, each $p_T > 75$ GeV</td>
<td>3×25</td>
<td>4×65</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Two b & two jets, each $p_T > 45$ GeV</td>
<td>3×25</td>
<td>4×35</td>
<td>0.9</td>
</tr>
<tr>
<td>b--physics</td>
<td>Two μ's, $p_T > 6.4$ GeV</td>
<td>6, 4</td>
<td>6, 4</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>plus dedicated b-physics selections</td>
<td></td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
Trigger Menu and Rates at 5e33

<table>
<thead>
<tr>
<th>Trigger</th>
<th>Typical offline selection</th>
<th>Trigger Selection</th>
<th>Level-1 Peak Rate (kHz)</th>
<th>HLT Peak Rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single leptons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single iso μ, $p_T > 21$ GeV</td>
<td>15</td>
<td>20</td>
<td>7</td>
<td>130</td>
</tr>
<tr>
<td>Single e, $p_T > 25$ GeV</td>
<td>20</td>
<td>24</td>
<td>18</td>
<td>139</td>
</tr>
<tr>
<td>Single μ, $p_T > 42$ GeV</td>
<td>20</td>
<td>40</td>
<td>5</td>
<td>33</td>
</tr>
<tr>
<td>Single τ, $p_T > 90$ GeV</td>
<td>60</td>
<td>80</td>
<td>2</td>
<td>41</td>
</tr>
<tr>
<td>Two leptons</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two μ's, each $p_T > 11$ GeV</td>
<td>2 x 10</td>
<td>2 x 10</td>
<td>0.8</td>
<td>19</td>
</tr>
<tr>
<td>Two loose e's, each $p_T > 15$ GeV</td>
<td>2 x 10</td>
<td>2 x 12</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>One e & one μ, $p_T > 10, 26$ GeV</td>
<td>20 $[\mu]$</td>
<td>7, 24</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>One loose e & one μ, $p_T > 19, 15$ GeV</td>
<td>15, 10</td>
<td>17, 14</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>Two τ's, $p_T > 40, 30$ GeV</td>
<td>20, 12</td>
<td>35, 25</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>One τ, one μ, $p_T > 30, 15$ GeV</td>
<td>12, 10 $[\mu]$</td>
<td>25, 14</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>One τ, one e, $p_T > 30, 19$ GeV</td>
<td>12, 15 $[\mu]$</td>
<td>25, 17</td>
<td>1</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Trigger Menu Evolution is prepared for up to 2e34
Trigger rates during Run-2

- **Level-1 trigger rate**
 - ATLAS can run at 100 kHz
 - However, at low number of bunches, dangerous resonance frequencies could damage the IBL wire-bonds
 - Automatic fixed frequency veto protects IBL
 - Physics trigger menu not affected by this rate limitation

- **HLT trigger rate**
 - 1 kHz physics output rate
 - 4 kHz total output rate due to additional (partial event) rates from
 - Calibration and monitoring events
 - Data Scouting events
 - Bandwidth ~1.5 GB/s (80% for physics)
Trigger-Level Analysis / DataScouting

- **Di-jet resonance search**
 - Lowest unprescaled single jet is 360 GeV
 - Limits reach of standard di-jet resonance search
 - Current standard analysis applies $m_{jj} > 1.1$ TeV to avoid kinematic bias

- **Trigger-Level Analysis**
 - Only store reconstructed HLT jets instead of full ATLAS event
 - Can store much higher event rates
 - 2 kHz vs 200-300 Hz
 - Allows significant lower reach in di-jet masses
 - Look forward to first results at Moriond
Jet Trigger Performance

- Jet trigger improvements for Run-2
 - Using topo-cluster based offline jet reconstruction of the entire calorimeter
 - As opposed to two-step (partial → full) reconstruction in run-1
 - Implemented jet area pileup suppression
 - Good agreement between online/offline jet energy scale

Jet Trigger Performance

HLT turn-on curves

Online vs Offline jets

- offline jet $p_T > 120$ GeV, $0.0 < \eta < 0.8$
- Events passing HLT_j100 trigger

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 147.4 nb$^{-1}$
Muon Trigger Performance

- **Barrel (RPC) and Endcap (TGC) muon trigger**
 - Low barrel L1 trigger efficiency due to geometrical trigger chamber coverage
 - Worst in the ATLAS feet region
 - HLT close to 100% efficient compared to L1
 - Factor 3 speed improvement in muon full scan finding
 - To prevent efficiency loss from L1 for di-muon trigger signatures

Barrel (RPC)

- \(\mu \mu, |\eta^\mu| < 1.05 \)

Endcap (TGC)

- \(\mu \mu, 1.05 < |\eta^\mu| < 2.4 \)
Electron and Photon Trigger Performance

- **Improvements for Run-2**
 - New fast tracking algorithms
 - MVA energy calibration
 - Likelihood-based identification used for electrons (was cut-based in Run-1)

- **Performance in Run-2**
 - Single (isolated) electron triggers with minimum threshold of 24 GeV
 - Medium electron identification criteria (will move to tight selections for higher luminosities)
 - Photon triggers close to 100% efficient at threshold

[Ref]
Tau Trigger Performance

- Tau trigger based on offline BDT
 - Ensure performance close to offline
 - Tracking performed in two-stages with narrowing regions to save CPU
Missing Energy Trigger Performance

- Several 'flavours' of MET in use at the trigger
 - Default cell-based algorithms with two-sided two-sigma noise suppression
 - Topo-cluster based algorithm (tc)
 - Jet-based algorithm with soft object correction (mht)
 - + variants with different calibration and pileup subtraction

- Best performing MET algorithm is analysis dependent
 - Will maintain most of them as negligible impact for total rate and CPU cost
 - Important to compare performance for equal rate triggers

![MET turn-ons for equal threshold](image1)

![MET turn-ons for equal rates](image2)
Expected performance of the b-jet Trigger

- Run-2 b-jet trigger has been completely rewritten
 - Use same tagging algorithm as offline (MV2c20)
 - Track finding and primary/secondary vertexing heavily optimized for CPU
 - Will make heavy use of L1Topo and FTK
 - Reduce input rate by applying topological selection already at L1
 - Use FTK tracks for primary vertex finding

![Expected b-jet performance](image1)

![Expected b-jet performance using FTK](image2)

ATLAS Preliminary
- *t̅t̅* simulation
- $|\mathbf{s}| = 13$ TeV
- Jet $p_T > 55$ GeV, $|\eta| < 2.5$

ATLAS
- Simulation $t\bar{t}$ (H → bb) all hadronic
- HLT items w/ FTK
- HLT items no FTK
Plans for Year-End-Technical-Stop and 2016

- Repairs and upgrades continue
 - New readout readout system for 2nd layer of Pixel detector
 - To prepare for higher pileup
 - Repair a damaged bellow of the toroid endcap magnet
 - Requires opening of one side of ATLAS
 - Standard maintenance work on all detectors

- Full reprocessing of 2015 data and MC underway
 - Allows for a coherent Run-2 dataset

- During 2016 full commissioning of
 - Fast Tracker (FTK)
 - Provides full event tracking for the HLT
 - L1Topo
 - Topological selection at L1
Conclusions

- The restart after the long shutdown and data taking through out 2015 has been very successful

- Despite the challenging conditions, the data taking efficiency and system stability has already reached a level comparable to the end of Run-1

- ATLAS is ready for more data and higher luminosities in 2016

- Many physics results are presented this week
Backup
IBL – Bowing due to temperature variations

- Detailed investigation of IBL bowing
 - Full report available: https://cds.cern.ch/record/2022587
 - Bowing occurs in the -phi direction due to different thermal expansion coefficients of the bare stave and the polyimide flex bus line

FEA simulation of bowing

![IBL - Bowing due to temperature variations](image_url)
Pileup distributions

- Mean number of interactions for 25ns, 50ns in run-1 and run-2
Reconstruction improvements

- Reduction in reconstruction time during LS1
 - More than factor of 3 speed improvements, mainly in ID tracking
 - Crucial for handling the higher HLT output rate and higher pileup later in Run-2

![Graph showing reconstruction time improvements over software releases](image-url)
Level-1 Topological Processor/Trigger

- Completely new piece of Level-1 hardware
 - Programmable trigger selections (FPGA)
 - Receives input from L1Calo and L1Muon
 - Applies selection on trigger objects

- Possible selections
 - Angular cuts (DR, Df, Dh)
 - Invariant mass cuts
 - Object refinements
 - etc.

- Essential for higher luminosity
 - Will allow us to keep the L1 thresholds low while not exceeding 100 kHz

- In commissioning...
 - Very complex piece of hardware
 - First trigger algorithms working as expected
 - Will be used during 2016 data-taking
Muon Detectors

- **CSC**
 - New ATCA-based readout operating nicely at 100 kHz
 - Absolutely essential for trigger operations in Run-2
 - Several layers show sparking during collisions
 - Two chambers show several broken wires (1 out of 4 layers lost)
 - Low voltage has been reduced slightly to prevent sparking

- **RPC**
 - Extensive repair campaign for gas leaks in LS1
 - Commissioning of new trigger towers (feet region) is ongoing

- **TGC**
 - Added Inner station coincidence to reduce trigger rates (see later)
 - Implemented veto for noise bursts (relevant for lumi > 5e33)

- **MDT**
 - Double-link readout for innermost stations to prevent saturation during Run-1
 - Alignment based on Toroid-off run taken in July during LHC ramp up
 - Preliminary alignment already good to O(50μm) in the barrel and O(100μm) in the endcap
TGC EI/FI coincidence logic

- Significant rate reduction with minimal loss in efficiency
 - >98% efficient with 15% rate reduction at 2.5e33 (more at higher lumi)
Muon barrel trigger efficiency

- **RPC chambers in feet region**
 - Trigger electronics installed and commissioned
 - Was post-poned to LS1 during construction phase
 - Will be fully operational for 2016 data-taking
 - Will increase trigger efficiency in this region to 60-70%

\[Z \to \mu \mu, p_T^{\mu} > 21 \text{ GeV}, |\eta^{\mu}| < 1.05 \]