BSM Higgs searches with the ATLAS experiment

XXII Cracow EPIPHANY Conference
On the Physics in LHC Run II
7-9 January 2016
• **Inner Detector** (ID) for tracking: semiconductors (pixel and SCT) and transition radiation tracker (TRT)

• **Super conductive solenoid** encloses the ID. It produces 2T uniform magnetic field along z

• **Sampling-based calorimeters**: lead+liquid Argon for EM energy (ECAL), steel+scintillator for Hadronic energy (HCAL), copper/tungsten+liquid argon in the forward calorimeter (FCAL)

• **Muon Spectrometer** (MS): one barrel and 2 end-cap air-core toroidal magnetic field (4T) to bend muon tracks in η

Detector performance (E, p_T in GeV)

<table>
<thead>
<tr>
<th>Detector component</th>
<th>Required resolution</th>
<th>η coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracking</td>
<td>$\sigma_{p_T}/p_T = 0.05% p_T \pm 1%$</td>
<td>±2.5</td>
</tr>
<tr>
<td>EM calorimetry</td>
<td>$\sigma_E/E = 10%/\sqrt{E} \pm 0.7%$</td>
<td>±3.2</td>
</tr>
<tr>
<td>Hadronic calorimetry (jets)</td>
<td></td>
<td>±2.5</td>
</tr>
<tr>
<td>barrel and end-cap</td>
<td>$\sigma_E/E = 50%/\sqrt{E} \pm 3%$</td>
<td>±3.2</td>
</tr>
<tr>
<td>forward</td>
<td>$\sigma_E/E = 100%/\sqrt{E} \pm 10%$</td>
<td>3.1 < $</td>
</tr>
<tr>
<td>Muon spectrometer</td>
<td>$\sigma_{p_T}/p_T=10%$ at $p_T = 1$ TeV</td>
<td>±2.7</td>
</tr>
</tbody>
</table>
During Run I the collected data refers to 7+8 TeV pp collisions recorded in 2011 and 2012:

- collisions at $\sqrt{s} = 7$ TeV
 - ~ 9 interactions per crossing
 - 4.6 fb$^{-1}$ collected good for physics
- collisions at $\sqrt{s} = 8$ TeV
 - ~ 20 interactions per crossing
 - 20.3 fb$^{-1}$ collected good for physics

Efficiencies for 2012 data taking

All good for physics: 95.5%

ATLAS performance close to or exceeding design specs in all compartments
Efficiencies close to or exceeding design specs in all compartments

ATLAS performance close to or exceeding design specs in all compartments

Total good for physics 3.2 fb⁻¹
Peak lumi: $5 \times 10^{33} \text{ cm}^{-1} \text{ s}^{-1}$

Efficiencies close to those during Run I

ATLAS data taking in Run II
In the SM only 1 complex Higgs doublet is responsible for electroweak symmetry breaking: **there is one neutral CP-even Higgs boson** h

Is the Higgs observed at the LHC the SM Higgs or the h from an extended sector?

Minimal Supersymmetric Standard Model (MSSM) solution to "hierarchy problem" ($m_h < m_{\text{Planck}}$) and dark matter (DM) candidates

Two Higgs Doublet Models (2HDM) extend beyond the SM Higgs sector to include two complex Higgs Doublets. Leads to **five physical states** H^+, H^-, A (CP-odd), H and h (CP-even)

Next-to-Minimal Supersymmetric Standard Model (NMSSM) adds additional electroweak singlet to the MSSM to dynamically generate the μ term solving the μ-problem of the MSSM

Entering a new realm of exploration: probing the couplings and decays rates of the observed Higgs boson whilst searching for additional Higgs States which could provide window into the underlying physics of EWSB

M. Schioppa – INFN Cosenza on behalf of ATLAS Collaboration
Number of ways to search:

- **Directly** from decays of neutral Higgs, including b-associated and gg-fusion production with VV, bb, ττ, μμ, etc. decays
- charged Higgs, including production in top decays with decay to τν, cs,..

- **Indirectly** by interpreting measured mass and couplings of light Higgs in extensions of the SM

Many analyses completed on full Run I data imposing constraints on many models

Some analysis completed with the 2015 Run II data and many others are underway.
Recent results from ATLAS

3. Search for Neutral Minimal Supersymmetric Standard Model Higgs Bosons $H/A \rightarrow \tau\tau$ produced in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector [ATLAS-CONF-2015-061]

4. Searches for Higgs boson pair production in the $hh \rightarrow bb\tau\tau$, $\gamma\gamma WW^*$, $\gamma\gamma bb$, $bbbb$ channels with the ATLAS detector [Phys. Rev. D92, 092004 (2015)]

5. Search for resonances decaying to photon pairs in 3.2 fb^{-1} of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector [ATLAS-CONF-2015-081]
The crucial question is: there is only one Higgs doublet (SM) or the Higgs sector is more complex? (e.g. with a second doublet leading to more than one Higgs of which one has the properties similar to those of the SM Higgs)

Moreover the strong evidence that DM could be explained via WIMPs suggest us that, if kinematically allowed, h could decays to WIMPs or other stable or long lived particles which do not interact with the detector material (Higgs boson “invisible” decays)

Results, based on $4.7\,\text{fb}^{-1} @ 7\,\text{TeV}$ and $20.3\,\text{fb}^{-1} @ 8\,\text{TeV}$ pp collision data, refer to the measurement of the observed Higgs production and decay rates in the $h\to\gamma\gamma$, $ZZ^*\to 4l$, $WW^*\to l\nu l\nu$, $Z\gamma$, bb, $\tau\tau$, $\mu\mu$ decays channels, together with top-quark pair associated Higgs production, are used to probe the scaling of the couplings with mass

For Higgs portal to DM direct search for “invisible” Higgs decays in the vector-boson fusion and associated production $hW/Z\ (Z\to ll, jj$ and $W\to jj) + E_{\text{miss}}$ is used
The mass dependence of the couplings is consistent with the predictions for a SM Higgs boson. Limits are set on parameters of different extension of the SM including the Minimal Composite Higgs Models.

From the production and decay rates and the measured mass of h in $\gamma\gamma$ and ZZ channels, a lower limit (@95% CL) is set on A mass in the hMSSM: $m_A > 370$ GeV.

Results from the direct searches:
- $A/H \rightarrow \tau\tau$
- $A \rightarrow Zh \rightarrow ll/\nu\nu \ bb$
- $H \rightarrow WW \rightarrow l\nu qq/ll$
- $H \rightarrow hh \rightarrow 4b, bb\gamma\gamma/\tau\tau$, ...
- $H^+ \rightarrow \tau\nu$

are also interpret in the hMSSM.
Direct searches for invisible h decays in the VBF, Z(ll)h and V(jj)h production modes are combined to set an UL@95% CL on the Higgs invisible decay BR of 2.5. Including also the visible decays the UL improves to 0.23.

The limit on the invisible decay BR is used to constrain the rate of DM-nucleon scattering in a model with a Higgs portal to DM.
Search for $H^\pm \rightarrow tb$

Heavy charged scalar particle indicates clearly physics BSM
H$^\pm$ are predicted by several models, e.g. two Higgs doublet model (2HDM)
For $m_{H^\pm} > m_t$ the dominant production mode is expected in association with t-quark
In 2HDM model the production and decay of H$^\pm$ depend on 2 parameters: tanβ and mixing angle α between h and H (CP-even doublet). For $m_{H^\pm} > m_t$ and $\cos(\beta - \alpha) \approx 0$ the dominant decay mode is $H^\pm \rightarrow tb$ with substantial contribution from $\tau\nu$ channel for large tanβ.

![Graphs showing production and decay processes](image)

- **5FS**
 - t associated production
- **4FS**
 - s-channel

20.3 fb$^{-1}$ pp collision data collected in 2015 at $\sqrt{s} = 8$ TeV
Search for $H^\pm \rightarrow tb \rightarrow$ lepton-jets, all-hadron decay modes
The reconstructed objects in this analysis are **electrons, muons, jets** (possibly reconstructed as b-quark-jets) and E_t^{miss} (only for t associated production).

“t associated production”: **two** t-quarks (both decaying in Wb, where one $W \rightarrow$ hadrons and the other $W \rightarrow e/\mu \nu$);

5 categories: 4j(2b), 5j(2b), ≥6j(2b), 4j(≥3b) and ≥5j(≥3b)

s-channel:

$H^+ \rightarrow tb \rightarrow (l\nu b)b$: only 1 e/μ + 2 or 3 jets (2 of them b-tagged)

$H^+ \rightarrow tb \rightarrow (qq'b)b$: 1 top-tagged jet + 1 b-tagged jet (all-hadronic final state)
In all categories except ≥6j(2b), the data exceed the SM prediction, but they are consistent within the large uncertainties on the background.

The 95% confidence level (CL) upper limits on $\sigma(gb \rightarrow tH^+) \times BR(H^+ \rightarrow tb)$ has been calculated.

At m_{H^+} values of 300 GeV, the excess of the data with respect to the background-only hypothesis corresponds to 2.3 standard deviations.

The red dash-dot line is the expected upper limit computed with a signal injected at $m_{H^+} = 300$ GeV, with a production cross section \times BR of 1.65 pb, corresponding to the best-fit value of the signal strength at this mass point.

$0.2 \leq m_{H^\pm} \leq 0.6$ TeV
For $H^+ \rightarrow tb$ produced in the \textit{s-channel} no significant excess of data with respect to the SM predictions is observed in both final state.

\[\ \text{For } H^+ \rightarrow tb \text{ produced in the } s\text{-channel no significant excess of data with respect to the SM predictions is observed in both final state.} \]
May be the discovered particle is part of an extended scalar sector, a scenario that is favored by a number of theoretical arguments.

Two parameters are needed at tree level to describe the MSSM Higgs sector: m_A and $\tan\beta$ (the ratio of the vacuum expectation values of the two Higgs doublets).

MSSM benchmark scenarios: $m_{h_{\text{max}}}$, $m_{h_{\text{mod}+}}$, $m_{h_{\text{mod}-}}$, light stop, light stau, tauphobic.

The couplings of the MSSM heavy Higgs bosons to down-type fermions are enhanced with respect to the SM for large $\tan\beta$ values resulting in increased branching fractions to τ leptons and b quarks, as well as a higher cross section for Higgs boson production in association with b-quarks. This has motivated a variety of searches in $\tau\tau$ and bb final states.
MSSM H/A → ττ

3.2 fb⁻¹ pp collision data collected in 2015 at √s= 13 TeV

Search for H/A → τ_hadτ_had and τ_lepτ_had decay modes

τ_had candidate is reconstructed as
 - a jet into the calorimeter enclosed in ΔR<0.4, p_T>20 GeV and |η| < 2.5
 - 1 or 3 charged particles into the ID with total charge ±1
 - a multivariate “medium” BDT-based identification requirements

τ_e candidate is reconstructed as
 - energy deposit into the EM calorimeter with associated charge-particle track into ID with E_T>15 GeV and |η| < 2.47
 - the charge is identified as electron if passes both the medium identification and the gradient isolation requirements

τ_μ candidate is reconstructed as
 - ID track associated with a MS track
 - P_T>20 GeV and |η| < 2.5
 - the combined MS-ID track have to pass both the medium identification and the gradient isolation requirements
Search for **H/A → τ_{had}τ_{had}**

- **Trigger:** Single-τ_{had} (p_{T}>125 GeV))
- =2 τ_{had}: the leading must match the trigger in ΔR=0.2 with p_{T}>135 GeV and “medium” identification requirements; the sub-leading p_{T}>55 GeV and “loose” identification criteria.
- Veto on electron or muon
- Δφ(τ_{1}^{had}, τ_{2}^{had}) > 2.7
- The two τ_{had} must have opposite sign electric charge

Search for **H/A → τ_{lep}τ_{had}**

- **Trigger:** combination of single-e (“medium” + p_{T}>24 GeV or “loose” + p_{T}>120 GeV or “lhmedium” + p_{T}>60 GeV) or single-μ (isolated μ +p_{T}>24 GeV or no-isolation + p_{T}>50 GeV)
- ≥1 τ_{had} candidate + e or μ candidate and total charge = 0 [overall reduction of SM bkg]
- Δφ(τ_{had},l) > 2.4 rad, where l=e,μ
- m_{T}(l, E_{T}^{miss})<40 GeV or m_{T}(l, E_{T}^{miss})>150 GeV [reduce bkg W]
- Veto on events with 80<m(τ_{had},e)<110 GeV [reduce bkg Z→ee]

Di-τ mass reconstruction:

\[
m_T^{\text{tot}} = \left[m_T^2(E_t^{\text{miss}}, \tau_1) + m_T^2(E_t^{\text{miss}}, \tau_2) + m_T^2(\tau_1, \tau_2) \right]^{1/2}
\]

where \(m_T(a,b)=[2p_T(a)p_T(b)(1-\cos\Delta\phi(a,b))]^{1/2}\)
MSSM H/A $\rightarrow \tau \tau$

[ATLAS-CONF-2015-061]

- **H/A $\rightarrow \tau_{\text{had}}\tau_{\text{had}}$ background**
 - Multi-jets

- **H/A $\rightarrow \tau_{\text{lep}}\tau_{\text{had}}$ background**
 - Z/γ $\rightarrow \tau \tau$, $t\bar{t} \rightarrow W^+W^- b\bar{b} \rightarrow \tau_{\text{had}} l \nu\nu b\bar{b}$
 - W+jets, multi-jets

M. Schioppa – INFN Cosenza on behalf of ATLAS Collaboration
The results from the channels studied in this search are combined to improve the sensitivity to MSSM Higgs boson production. The data are found to be in good agreement with the predicted background yields and hence the results are given in terms of exclusion limits.

Observed and expected 95% CL upper limits on the $\sigma \times \text{BR}$ for the production of a single scalar boson ϕ decaying to $\tau \tau$, as a function of m_ϕ.

MSSM H/A $\rightarrow \tau \tau$
Observed and expected 95% CL upper limits on tanβ as a function of m_A in various MSSM scenarios and for the hMSSM scenario.

In the m_h^{mod+} scenario (the most stringent constraint for tan β) excludes tanβ>10 for m_A=200 GeV.

Improve the limits of Run I for the mass range $m_A>700$ GeV.
In SM the existence of h is a consequence of electroweak symmetry breaking.

SM predicts self-coupling between h, measurements of which tests the EWSB mechanism.

Data collected so far (25fb$^{-1}$) are insensitive to the self-coupling in SM but in other models, e.g. MSSM the $gg \rightarrow H \rightarrow hh$ would lead to a new resonant Higgs pair production, in contrast to the non-resonant by the SM.

20.3 fb$^{-1}$ pp collision data collected in Run 1 at $\sqrt{s} = 8$ TeV.

Search for $hh \rightarrow bb\tau\tau, \gamma\gamma WW^*, \gamma\gamma bb, bbbb$ channels. In this study:

- $h \rightarrow \tau\tau$ the first τ decays to leptons and the second to hadrons using the same methodology of single Higgs boson search.
- $h \rightarrow \gamma\gamma$ same methodology as the single Higgs boson search.
- $h \rightarrow WW^* \rightarrow l\nu qq'$
4 \hh \rightarrow \bbtt, \gamma\gamma\WW^*, \gamma\gamma\bb, \bbbb

The reconstructed objects are: **electrons, muons, photons, jets, taus (hadron decay)** and \(E_t^{\text{miss}} \)

\[\hh \rightarrow \gamma\gamma\bb \]
- di-photon trigger
- two isolated photons with 105<\(m_{\gamma\gamma} \)<160 GeV and two energetic b-tagged jets with 95<\(m_{\bb} \)<135 GeV
- Non-resonant analysis: the 95% CL upper limit of 2.2 (1.0) pb observed (expected) for \(\sigma(gg\rightarrow hh\rightarrow \gamma\gamma\bb) \)
- Resonant analysis: the 95% CL upper limit observed (expected) on \(\sigma(gg\rightarrow H) \times BR(H\rightarrow hh) \) are 2.3 (1.7) pb at \(m_H=260 \) GeV and 0.7 (0.7) pb at \(m_H=500 \) GeV

The global probability of an excess as significant as the observation to occur at any mass in the range studied is found to be 0.019, corresponding to **2.1\sigma**
\(hh \rightarrow b\bar{b}\tau\tau, \gamma\gamma WW^*, \gamma\gamma bb, b\bar{b}bb \)

\[[\text{Phys. Rev. D92, 092004 (2015)}] \]

hh→bbbb
- resolved and boosted Higgs reconstruction methods
- multijet trigger with b-quark jet tagging
- two back-to-back high momentum bb systems with \(m_{bb} \) consistent with the h mass
- angular distance between the two b-jets of the bb di-jet system in \(\Delta R<1.5 \)
- non-resonant analysis: the 95\% CL upper limit of 220 (220) fb observed (expected) for \(\sigma(gg\rightarrow hh\rightarrow bbbb) \)
- resonant analysis: the 95\% CL upper limit observed (expected) on \(\sigma(gg\rightarrow H\rightarrow hh\rightarrow bbbb) \) ranges from 52 (56) fb, at \(m_H=500 \) GeV, to 3.6 (5.8) fb at \(m_H=1000 \) GeV

hh→bbττ
- trigger with at least one lepton with \(p_T>24 \) GeV
- only one lepton (\(p_T>26 \) GeV), one hadronically decaying tau lepton with opposite charge (\(p_T>20 \) GeV) meeting “medium” criteria, \(\geq 2 \) jets with \(p_T>30 \) GeV of which 1-3 b-tagged jets
- No evidence of Higgs boson pair production is present in the data
- For non-resonant production the expected (observed) cross section 95\% CL upper limit is 1.6 (1.3) pb.
$hh \rightarrow \gamma\gamma WW^*$

- to reduce multijet bkg, one of the W is required to decay to an e or a μ, whereas the other is required to decay hadronically, leading to the $\gamma\gamma qq'\ell\nu$ final state
- di-photon trigger
- ≥ 2 identified photons with $|m_{\gamma\gamma} - m_h| < 2\sigma = 3.4$ GeV
- ≥ 2 jets and only 1 lepton, E^miss_t and no b-tagged jets
- For non-resonant production the expected (observed) cross section 95% CL upper limit is 11.4 (6.7) pb.

[Phys. Rev. D92, 092004 (2015)]
hh \rightarrow bbb, bbb, γγbb, γγWW* combined results

The upper limit on $\sigma(gg\rightarrow H) \times BR(H\rightarrow hh)$ varies from 2.1 pb at 260 GeV to 0.011 pb at 1000 GeV.

2.1σ γγbb
Resonances decaying to photon pairs

\[h \rightarrow \gamma\gamma \] such as those expected in models with an extended Higgs sector

3.2 fb\(^{-1}\) pp collision data collected in 2015 at √s = 13 TeV

Diphoton trigger with \(E_T > 35 \text{ GeV} \) (leading photon) and \(E_T > 25 \text{ GeV} \) (sub-leading photon)

The diphoton selection follows the approach of the Run 1 analysis (85-600 GeV) in which \(E_T^{\gamma\text{-leading}}/m_{\gamma\gamma} > 0.4 \) and \(E_T^{\gamma\text{-subleading}}/m_{\gamma\gamma} > 0.3 \)

The selections are optimized by maximizing the ratio of the expected significance obtained with the stricter relative selections and with the trigger \(E_T \) selections

The isolation requirement imposed on the photon candidates of the pairs is similarly optimized (it reduces mostly the γ-jet and jet-jet reducible bkg)

Both optimization produce a relative significance improvement >20% for masses >600 GeV

The total signal selection efficiency ranges from 25 to 40% depending on the boson production mechanism (ggF, VBF, ttH) and on the resonance masses.
An upper limit at 95% CL is reported on the fiducial production cross section of a narrow scalar boson times its decay BR into two photons, for masses ranging from 0.2 to 1.7 TeV.

The largest deviation from the bkg-only hypothesis is found for a mass of about 750 GeV, corresponding to a local significance of 3.6 σ and a global significance of 2.0 σ.

The second most significant deviation from the background-only hypothesis is found for a mass of about 1.6 TeV, corresponding to a local significance of 2.8 σ.

\[\sqrt{s} = 13 \text{ TeV}, \, 3.2 \, \text{fb}^{-1} \]
“... The events in this region are scrutinized. No detector or reconstruction effect that could explain the larger rate is found, nor any indication of anomalous background contamination. The kinematic properties of these events are studied with respect to those of events populating the invariant mass regions above and below the excess, and no significant difference is observed. The Run-1 analysis is extended to invariant masses larger than 600 GeV by using the new background modeling techniques. The compatibility between the results obtained with the 8 TeV and 13 TeV datasets is estimated under the Narrow Width Approximation hypothesis and assuming a large-width resonance with $\alpha = 6\%$, using the best fit value of the ratio of cross sections. For an s-channel gluon-initiated process, the parton-luminosity ratio is expected to be 4.7. Under those assumptions, the results obtained with the two datasets are found to be compatible within 2.2 and 1.4 standard deviations for the two width hypotheses respectively. ...”
We are entering a new era in Higgs BSM physics where we study the couplings of the observed Higgs boson in more detail and search for additional Higgs states.

Wide range of new/recent results on Higgs physics BSM from ATLAS:

- Limits on new phenomena from Higgs Couplings
- Search for resonances decaying to photon pairs
- Search for $H^{\pm}\rightarrow tb$
- Search for $H/A\rightarrow \tau \tau$
- Search for Higgs boson pairs

New and interesting analysis underway in Run-II...stay tuned!
Resonances decaying to photon pairs

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$

σ levels:
- 0σ
- 1σ
- 2σ
- 3σ
- 4σ

m_x [GeV]