Excited QCD 2016
Costa da Caparica, Lisbon, Portugal
6-12 March 2016

QCD at high temperatures & finite densities
- heavy-ion collisions, jets, diffraction, hadronisation
- quark-gluon plasma
- holography, colour-glass condensate
- compact stars, applications to astrophysics

QCD at low energies
- excited hadrons
- new resonances
- glueballs, multiquarks

Searches for Supersymmetry and Exotic phenomena with the ATLAS Detector

N. Chr. Benekos (NTUA)
Representing the ATLAS collaboration

More information
https://indico.cern.ch/event/453434/
excitedqcd@th.physik.uni-frankfurt.de
ATLAS Run-1 Recap

• No other clear indications of new physics beyond the SM
 – Need to cast wide a net as possible even with some theoretical guidance
 – Need to cover broad phase spaces: many different detector signatures, large range of masses, large span in production rates

• Run 1 results have been extremely useful to kill some models or narrow down their allowed phase spaces

- Many extensions of the SM have been developed over the past decades:
 - Supersymmetry
 - Extra-Dimensions
 - Technicolor(s)
 - Little Higgs
 - No Higgs
 - GUT
 - Hidden Valley
 - Leptoquarks
 - Compositeness
 - 4^{th} generation (t', b')
 - LRSM, heavy neutrino
 - What else?

(for illustration only)
2015 data-taking

- 2015 dataset at 13 TeV:
 - 3.9 fb⁻¹ recorded
 - 3.3 fb⁻¹ "all good" for BSM searches
 - $L^{\text{inst}} = 5.1 \times 10^{33}$ cm² s⁻¹

- New 4th innermost layer of pixel in ATLAS: the IBL:
 at 3.3 cm vs 5.05 cm for the 2nd layer

- Improve b-tagging performance which is important for several BSM searches

ATLAS performance close to or exceeding design specs in all compartments
Strategy:

- Define selection based on signal signatures and background (bkg) kinematics.
- Compare data to Standard Model bkg (Monte Carlo (MC) + data driven) and MC signal predictions → data consistent with bkg+signal would be evidence for new physics.

No evidence for new physics:

- Limits typically set on cross-section x branching fraction ($\sigma \times BR$).
- Comparisons provided for specific models, but usually possible for reader to constrain additional models.
Global symmetry between fermions & bosons: all SM particles have SUSY partners

\[
Q | \text{fermion} \rangle = | \text{boson} \rangle
\]

\[
Q | \text{boson} \rangle = | \text{fermion} \rangle
\]

\[
S_{\text{SUSY}} = S_{\text{SM}}^{-1/2}
\]

\[
R = (-1)^{2s}(-1)^{3B}(-1)^L
\]

Why SUSY?

- Solves the hierarchy problem
- Provides the dark matter candidate: if R-parity is conserved, lightest SUSY particle (LSP, neutralino) is stable
- Extends the Poincare group, provides unification with gravity
- Required for the string theory
- ... and more others ...
Classification of SUSY searches

Production modes

- **Electroweak**
 - Gluinos/squarks
 - Third generation

- **Strong**
 - Inclusive searches for \tilde{q} and \tilde{g}
 - Large cross-section
 - Dedicated searches for \tilde{t}_1 and \tilde{b}_1
 - Final state similar to the SM bkg
 - Searches for $\tilde{\chi}^0_1$ and $\tilde{\chi}^{\pm}_1$
 - Low cross-section
 - Multi-leptons final states with low SM bkg
 + Dedicated searches for long-lived particles and RPV SUSY
SUSY searches: from 8 TeV to 13 TeV

From http://inspirehep.net/record/1326406

- large increase of SUSY cross-section from 8 to 13 TeV:
 - $\sigma(\tilde{g}\tilde{g}) \times 30$ for $m(\tilde{g}) = 1.4$ TeV
 - $\sigma(\tilde{t}\tilde{t}) \times 8$ for $m(\tilde{t}) = 700$ GeV
 - $\sigma(\tilde{\chi}\tilde{\chi}) \times 4$ for $m(\tilde{\chi}) = 500$ GeV

- focus on gluino and third generation squarks searches with 2015 data, with a discovery potential beyond Run-1 limits even with 3 fb$^{-1}$ of 13 TeV data

- discovery potential of EW SUSY beyond Run-1 limits will be reached with 2016 data
Electrons:
- ID efficiencies measured in 2015 data to derive MC scale factors
- calibration based on run 1 with MC extrapolations

Muons:
- ID and reco efficiencies measured in 2015 data
- energy scale and resolution taken also from 2015 data

excellent agreement between data and MC

Electrons and Muons calibrated with Z events
Differences in efficiency and energy scale corrected
jets:
- Use Run-1 knowledge to extrapolate systematic uncertainties for run 2
- JES studies in 2015 data with photon-jet and multi-jets balance

b-tagging:
- improvements in algorithms and with new IBL
 - b-tagging efficiency increased by 10% for the same light jet rejection
- MC calibration validated in data with $t\bar{t}$ events
- new E_T calculation with a track-based soft term (TST) combined with calorimeter-based measurements for hard objects

- less sensitivity to pile-up than with calorimeter-based soft term (CST)

- systematic uncertainties based on MC, and validated in data
Results and interpretations for 7 analyses

1-\(l\) + jets + \(E_T\) analysis
ATLAS-CONF-2015-076

0-\(l\) + 2-6 jets + \(E_T\) analysis
ATLAS-CONF-2015-062

0-\(l\) + 7-10 jets + \(E_T\) analysis
ATLAS-CONF-2015-077

0-1-\(l\) + 3-4 \(b\)-jets + \(E_T\) analysis
ATLAS-CONF-2015-067

2-\(l\) same-sign / 3-\(l\) analysis
ATLAS-CONF-2015-078

\(Z \rightarrow ll + E_T\) analysis
ATLAS-CONF-2015-082

0-\(l\) + 2 \(b\)-jets + \(E_T\) analysis
ATLAS-CONF-2015-066
Search for gluino pair production in final states with 1 lepton, jets and E_T

ATLAS-CONF-2015-076

- **4 hard-ℓ SRs:**
 - $p_T > 35$ GeV lepton
 - No additional leptons with $p_T > 10$ GeV
 - 4-6 jets

- **2 soft-ℓ SRs:**
 - $p_T > 7(6)$ GeV for $e(\mu)$ and $p_T < 35$ GeV
 - No additional $e(\mu)$ with $p_T > 7(6)$ GeV
 - 2 or 5 jets

- Main backgrounds: $t\bar{t}$ and W +jets events
- Suppressed with cuts on transverse mass
- Estimated by normalising the MC in CRs
 - Ex: soft $e+2j$: split CR with low m_T and E_T:
 - $t\bar{t}$ CR: ≥ 1 b-jet
 - W +jets CR: $= 0$ b-jet

- Subdominant background from MC
Overall good agreement between expected background and observation

Largest deviation of 2σ observed in the SR with 1 hard lepton + 6 jets:

- 1 electron: $\text{exp} = 1.9 \pm 0.6$, $\text{obs} = 2$
- 1 muon: $\text{exp} = 2.5 \pm 0.8$, $\text{obs} = 8$
0-1 + 2-6 jets + E_T analysis overview

- Search for gluino and squark pair production in final states with 0 lepton, jets and E_T

- Define 7 signal regions to probe all scenarios
- From 2 to ≥ 6 jets to target different models
- Different m_{eff} cuts to probe different mass splittings
7 SRs with 2-6 jets & different cuts
- Targeting different models

Veto leptons with $p_T > 10$ GeV

4 CRs for each SR, to obtain background from
- Multi-jet
- $Z(\rightarrow \nu\nu) +$jets
- $W(\rightarrow \ell\nu) +$jets
- tt, single-t

Background from MC
- Di-boson

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Signal Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_T^{miss} [GeV] ></td>
<td>200</td>
</tr>
<tr>
<td>$p_T(j_1)$ [GeV] ></td>
<td>200 300</td>
</tr>
<tr>
<td>$p_T(j_2)$ [GeV] ></td>
<td>200 50 200</td>
</tr>
<tr>
<td>$p_T(j_3)$ [GeV] ></td>
<td>100</td>
</tr>
<tr>
<td>$p_T(j_4)$ [GeV] ></td>
<td>100</td>
</tr>
<tr>
<td>$p_T(j_5)$ [GeV] ></td>
<td>100</td>
</tr>
<tr>
<td>$p_T(j_6)$ [GeV] ></td>
<td>100</td>
</tr>
<tr>
<td>$\Delta \phi(j_{1,2,3}, E_T^{\text{miss}})_{\text{min}} > 0.8$</td>
<td>0.4 0.4 0.8 0.4</td>
</tr>
<tr>
<td>$\Delta \phi(j_{i>3}, E_T^{\text{miss}})_{\text{min}} >$</td>
<td>0.2</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}/\sqrt{H_T}$ [GeV$^{1/2}$] ></td>
<td>15 20</td>
</tr>
<tr>
<td>Aplanarity ></td>
<td>0.04</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}/m_{\text{eff}}(N_j) >$</td>
<td>0.2 0.25 0.2</td>
</tr>
<tr>
<td>$m_{\text{eff}}(\text{incl.})$ [GeV] ></td>
<td>1200 1600 2000 2200 1600 1600 2000</td>
</tr>
</tbody>
</table>
Main backgrounds: \((Z \rightarrow \nu\nu)\)+jets, \(W\)+jets, \(tt\) and single top events with hadronic taus

- normalise the MC in 3 dedicated CRs with same jets \(p_T\) and \(m_{\text{eff}}\) cuts as the SRs:
 - \((Z \rightarrow \nu\nu)\)+jets CR
 - \(\gamma\)+jets
 - \(p_T(\gamma) > 130\) GeV
 - treat the photon as \(\nu\) in \(E_T\)
 - \(W\)+jets CR
 - 1-lepton treated as a jet
 - \(30 < m_T < 100\) GeV
 - \(b\)-jet veto
 - top CR
 - 1-lepton treated as a jet
 - \(30 < m_T < 100\) GeV
 - \(\geq b\)-jet

- sub-dominant diboson contribution estimated from MC
- residual contribution from multi-jets events with fake \(E_T\) estimated in a CR with reverted cuts on \(\Delta\phi_{\text{min}}(E_T, jets)\) and \(E_T / m_{\text{eff}}\)
$0-1+2-6$ jets $+E_T$: Results

Expected and observed event count in each SR:

- **ATLAS Preliminary**
- $s=13$ TeV, 3.2 fb$^{-1}$

Data 2015
- SM Total
- Multi-jet
- W+jets
- $t\bar{t}$ ($t\bar{t}$EW) & single top
- Z+jets
- Diboson

Number of events

<table>
<thead>
<tr>
<th>Signal Region</th>
<th>Number of Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2l</td>
<td>107</td>
</tr>
<tr>
<td>2j, 2m</td>
<td>106</td>
</tr>
<tr>
<td>2l</td>
<td>105</td>
</tr>
<tr>
<td>2j, 2m</td>
<td>104</td>
</tr>
<tr>
<td>2l</td>
<td>103</td>
</tr>
<tr>
<td>2j, 2m</td>
<td>102</td>
</tr>
</tbody>
</table>

SR with 2 jets cover the whole plane

exclude squark masses up to ~ 1 TeV

interpretation with squarks

$\tilde{q}\tilde{q} \rightarrow \tilde{q}q\tilde{\chi}_1^0$

0-lepton + 2-6 jets + E_T^{miss}

$s = 13$ TeV, 3.2 fb$^{-1}$

ATLAS Preliminary

- Observed limit ($\pm 1\sigma_{SUSY}$)
- Expected limit ($\pm 1\sigma_{exp}$)

ATLAS 8 TeV, 20.3 fb$^{-1}$

All limits at 95% CL

ATLAS Preliminary

- Observed limit ($\pm 1\sigma_{SUSY}$)
- Expected limit ($\pm 1\sigma_{exp}$)

ATLAS 8 TeV, 20.3 fb$^{-1}$

All limits at 95% CL
Search for gluino pair production with complex decay chains

- 6 SRs with 7-8 $p_T > 80$ GeV jets, incl. 0-2 b-jets
 (trigger : 5 jets with $p_T > 70$ GeV)
- 9 SRs with 8-10 $p_T > 50$ GeV jets, incl. 0-2 b-jets
 (trigger : 6 jets with $p_T > 45$ GeV)
- No leptons with $p_T > 10$ GeV

- tt, V+jets background obtained from CRs containing a lepton with $p_T > 20$ GeV
- Multijet background from CRs with 1 jet less.
- Utilize near invariance of $E_T^{miss}/\sqrt{H_T}$ wrt. N_{jets}
 (shape is almost invariant wrt N_{jets}) when MET originates from calorimeter mismeasurement
 - Checked in VRs

ATLAS-CONF-2015-077
• SR: \(\frac{E_T^{miss}}{\sqrt{H_T}} > 4 \sqrt{\text{GeV}} \)

• Distribution normalization:
\(\frac{E_T^{miss}}{\sqrt{H_T}} < 1.5 \sqrt{\text{GeV}} \)

Overall good agreement between expected background and data in the 15 SR
Expected and observed event count in each SR:

<table>
<thead>
<tr>
<th>Signal region</th>
<th>Fitted background</th>
<th>Obs events</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multijet</td>
<td>Leptonic</td>
</tr>
<tr>
<td>8j50</td>
<td>109.3 ± 6.8</td>
<td>79 ± 25</td>
</tr>
<tr>
<td>8j50-1b</td>
<td>76.7 ± 2.6</td>
<td>61 ± 21</td>
</tr>
<tr>
<td>8j50-2b</td>
<td>33.8 ± 2.1</td>
<td>33 ± 13</td>
</tr>
<tr>
<td>9j50</td>
<td>16.8 ± 1.2</td>
<td>12.8 ± 5.4</td>
</tr>
<tr>
<td>9j50-1b</td>
<td>13.5 ± 1.9</td>
<td>10.2 ± 4.9</td>
</tr>
<tr>
<td>9j50-2b</td>
<td>6.4 ± 1.6</td>
<td>5.8 ± 3.3</td>
</tr>
<tr>
<td>10j50</td>
<td>2.61 ± 0.60</td>
<td>1.99 ± 0.62</td>
</tr>
<tr>
<td>10j50-1b</td>
<td>2.42 ± 0.62</td>
<td>1.44 ± 0.49</td>
</tr>
<tr>
<td>10j50-2b</td>
<td>1.40 ± 0.87</td>
<td>0.83 ± 0.37</td>
</tr>
<tr>
<td>7j80</td>
<td>40.0 ± 5.1</td>
<td>30 ± 12</td>
</tr>
<tr>
<td>7j80-1b</td>
<td>29.1 ± 3.2</td>
<td>20.8 ± 10</td>
</tr>
<tr>
<td>7j80-2b</td>
<td>11.5 ± 1.6</td>
<td>11.0 ± 4.9</td>
</tr>
<tr>
<td>8j80</td>
<td>4.5 ± 1.9</td>
<td>4.9 ± 2.1</td>
</tr>
<tr>
<td>8j80-1b</td>
<td>3.9 ± 1.5</td>
<td>3.8 ± 2.1</td>
</tr>
<tr>
<td>8j80-2b</td>
<td>1.72 ± 0.92</td>
<td>2.3 ± 1.1</td>
</tr>
</tbody>
</table>

pMSSM model

- for $m(\tilde{\chi}^0_1) < 500$ GeV and $m(\tilde{g}) > 1200$ GeV: $\tilde{g} \to q\bar{q} \tilde{\chi}^0_1$ becomes dominant
- for $m(\tilde{\chi}^\pm_1) > 500$ GeV and $m(\tilde{g}) < 1200$ GeV: $\tilde{g} \to \tilde{\chi}^\pm_1$ becomes dominant

\[
m(\tilde{\chi}^\pm_1) = \frac{m(\tilde{g}) + m(\tilde{\chi}^0_1)}{2}
\]

\[
m(\tilde{\chi}^0_2) = \frac{m(\tilde{\chi}^\pm_1) + m(\tilde{\chi}^0_1)}{2}
\]
Searches with at least 3 or more b-jets

- Gluino-mediated stop pair production: **ATLAS-CONF-2015-067**
 - very rich final state
 - 2 channels with \(= 0 \) or \(\geq 1 \) lepton
 - require high jets and \(b \)-jets multiplicities
 - use jet substructure techniques to probe boosted topologies with large-R jets

- Gluino-mediated sbottom pair production:
 - 0-lepton channel only
 - require high \(b \)-jets multiplicity
 - Main discriminant variables to reject backgrounds are \(E_T \) and \(m_{\text{eff}} \)

8 SRs:
- \(\geq 3 \) \(b \)-jets
- 0 or 1 lepton
- 0 or \(\geq 1 \) top (\(R = 1 \) jet)

MET distributions in some SRs:
systematics dominated by $t\bar{t}$ modeling and b-tagging unc.

No significant excess in data
exclude gluino masses up to ~ 1.7 TeV

ATLAS-CONF-2015-067

No significant excess in data
exclude gluino masses up to ~ 1.8 TeV
very low SM bkg, broad sensitivity to many SUSY scenarios with leptons in the decay chain:

-Events selected with a logical OR combination of E_T and di-lepton triggers
-4 signal regions defined according to the leptons, b-jets, jets, E_T and m_{eff}:
 - 3 main sources of backgrounds:
 - fake+non-prompt leptons
 - electrons charge flip
 - irreducible bkg

<table>
<thead>
<tr>
<th>Signal region</th>
<th>$N_{signal\ lept}$</th>
<th>$N_{2\text{jets}}$</th>
<th>$N_{50\text{jets}}$</th>
<th>$E_{T\ miss}$ [GeV]</th>
<th>m_{eff} [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR0b3j</td>
<td>≥ 3</td>
<td>$=0$</td>
<td>≥ 3</td>
<td>>200</td>
<td>>550</td>
</tr>
<tr>
<td>SR0b5j</td>
<td>≥ 2</td>
<td>$=0$</td>
<td>≥ 5</td>
<td>>125</td>
<td>>650</td>
</tr>
<tr>
<td>SR1b</td>
<td>≥ 2</td>
<td>≥ 1</td>
<td>≥ 4</td>
<td>>150</td>
<td>>550</td>
</tr>
<tr>
<td>SR3b</td>
<td>≥ 2</td>
<td>≥ 3</td>
<td>-</td>
<td>>125</td>
<td>>650</td>
</tr>
</tbody>
</table>

- from jet misID, HF decay, or γ conversion
- data-driven estimate with the loose to tight matrix method
- from hard brem γ conversion
- charge flip rate from data in $Z/\gamma^* \rightarrow e^+ e^-$ events
- apply this rate in 2L OS SR to get the 2L SS bkg in corresponding SR
- $tt+V, VV, VVV$ events with 2 SS or 3 real leptons:
 - estimated from MC and Validated with data in VRs
 - largest deviation of 1.3 σ in the $tt+V$ VR

ATLAS-CONF-2015-078
2-/3-l same-sign / 3-/4-analysis Results

<table>
<thead>
<tr>
<th></th>
<th>SR0b3j</th>
<th>SR0b5j</th>
<th>SR1b</th>
<th>SR3b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Total bkg events</td>
<td>2.4 ± 0.7</td>
<td>0.98 ± 0.32</td>
<td>4.3 ± 1.0</td>
<td>0.78 ± 0.24</td>
</tr>
<tr>
<td>$p(s = 0)$</td>
<td>0.33</td>
<td>0.06</td>
<td>0.12</td>
<td>0.36</td>
</tr>
<tr>
<td>Fake/non-prompt leptons</td>
<td>< 0.2</td>
<td>$0.04^{+0.17}_{-0.04}$</td>
<td>0.8 ± 0.8</td>
<td>0.12 ± 0.16</td>
</tr>
<tr>
<td>Charge flip</td>
<td>0.02 ± 0.01</td>
<td>0.60 ± 0.12</td>
<td>0.19 ± 0.06</td>
<td>0.21 ± 0.09</td>
</tr>
<tr>
<td>$t\bar{t}W, t\bar{t}Z$</td>
<td>0.13 ± 0.06</td>
<td>0.11 ± 0.06</td>
<td>2.0 ± 0.7</td>
<td>0.21 ± 0.09</td>
</tr>
<tr>
<td>WZ</td>
<td>1.5 ± 0.5</td>
<td>0.61 ± 0.25</td>
<td>0.17 ± 0.09</td>
<td>< 0.02</td>
</tr>
<tr>
<td>$W^\pm W^\pm jj$</td>
<td>< 0.14</td>
<td>< 0.14</td>
<td>< 0.03</td>
<td>< 0.03</td>
</tr>
<tr>
<td>ZZ</td>
<td>0.6 ± 0.4</td>
<td>0.6 ± 0.4</td>
<td>0.02 ± 0.01</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Triboson</td>
<td>0.09 ± 0.05</td>
<td>0.05 ± 0.04</td>
<td>0.7 ± 0.4</td>
<td>0.26 ± 0.14</td>
</tr>
<tr>
<td>Rare</td>
<td>0.05 ± 0.04</td>
<td>0.05 ± 0.04</td>
<td>0.7 ± 0.4</td>
<td>0.26 ± 0.14</td>
</tr>
</tbody>
</table>

ATLAS-CONF-2015-078
Search for gluino (or squark) pair production with Z in the decay chains

Dominant backgrounds:

- tt, $t\bar{t}$:
 - Using CR with different-flavor leptons
- $Z/\gamma^* +$ jets:
 - Using CR with $\gamma +$ jets

- Check excess observed in the ATLAS
- Run-1 8 TeV analysis:
 - 3 (1.7) σ excess in the ee ($\mu\mu$) channel

- Reproduce the Run-1 signal region:
 - 2 e ($e^+ e^-$ or $\mu^+ \mu^-$) with $p_T > 50.25$ GeV and $81 < m(ee) < 101$ GeV
 - ≥ 2 jets with $\Delta\phi_{\text{min}}(E_T, \text{jets}) > 0.4$
 - $E_T > 225$ GeV and $H_T > 600$ GeV

Table:

<table>
<thead>
<tr>
<th>E_T^{miss} [GeV]</th>
<th>H_T [GeV]</th>
<th>n_{jets}</th>
<th>m_{tt} [GeV]</th>
<th>SF/DF</th>
<th>$\Delta\phi(\text{jet}_{12}, p_T^{\text{miss}})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 225</td>
<td>> 600</td>
<td>≥ 2</td>
<td>$81 < m_{tt} < 101$</td>
<td>SF</td>
<td>> 0.4</td>
</tr>
</tbody>
</table>
10.3 ± 2.3 events expected
21 observed (10 ee + 11 µµ)
excess of 2.2 σ
CMS result: Exp = 12^{+4.0}_{-2.8}, obs = 12

ATLAS-CONF-2015-082
Search for direct sbottom squark production

\[p \xrightarrow{\tilde{b}} \tilde{\chi}_1^0 \]

4 SRs:
- 3 “SRA” target pair production
- SRB target pair production with ISR jet

Main discriminator: contravese mass,
\[m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2 \]

Can be used to measure \(m_b \)
Signal region channels

<table>
<thead>
<tr>
<th></th>
<th>SRA250</th>
<th>SRA350</th>
<th>SRA450</th>
<th>SRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed events</td>
<td>22</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Fitted bkg events</td>
<td>40 ± 8</td>
<td>9.5 ± 2.6</td>
<td>2.2 ± 0.6</td>
<td>13.1 ± 3.2</td>
</tr>
<tr>
<td>Fitted $t\bar{t}$ events</td>
<td>0.9 ± 0.4</td>
<td>0.37 ± 0.16</td>
<td>0.06 ± 0.03</td>
<td>5.9 ± 2.4</td>
</tr>
<tr>
<td>Fitted single top events</td>
<td>2.1 ± 1.3</td>
<td>0.54 ± 0.37</td>
<td>0.15 ± 0.10</td>
<td>1.2 ± 0.8</td>
</tr>
<tr>
<td>Fitted $W+$jets events</td>
<td>6.3 ± 2.4</td>
<td>1.3 ± 0.6</td>
<td>0.41 ± 0.23</td>
<td>1.2 ± 0.6</td>
</tr>
<tr>
<td>Fitted $Z+$jets events</td>
<td>30 ± 7</td>
<td>7.1 ± 2.4</td>
<td>1.5 ± 0.5</td>
<td>3.3 ± 1.4</td>
</tr>
<tr>
<td>(Alt. method $Z+$jets events)</td>
<td>(33 ± 7)</td>
<td>(7.2 ± 1.9)</td>
<td>(2.7 ± 0.9)</td>
<td>-</td>
</tr>
<tr>
<td>Fitted “Other” events</td>
<td>0.7 ± 0.6</td>
<td>0.1 ± 0.1</td>
<td>0.02 ± 0.02</td>
<td>1.4 ± 0.4</td>
</tr>
</tbody>
</table>

ATLAS Preliminary

Bottom squark pair production, $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$

Observed limit (±1 σ_{theory})

Expected limit (±1 σ_{\exp})

All limits at 95% CL

Best SR

ATLAS-CONF-2015-066
Leptonic final states:
- e/μ and missing energy [ATLAS-CONF-2015-063]
- $e^+e^-, \mu^+\mu^-$ [ATLAS-CONF-2015-070]
- $e^+\mu^-$ [ATLAS-CONF-2015-072]

Di-jet/photon mass spectra:
- jet-jet [arXiv:1512.01530v2]
- γ-jet [arXiv:1512.05910]
- $\gamma\gamma$ [ATLAS-CONF-2015-081]

“Exotics” means direct searches for particles/phenomena:
- beyond the Standard Model
- not supersymmetry or BSM Higgs

Leaves a huge range of hypotheses that explain one or more of the mysteries in the SM

These searches benefit greatly from the increased LHC energy
with ~3 fb-1 at 13 TeV, we have already exceeded Run-1 sensitivity in many cases
• Reconstruct exactly one isolated lepton with $p_T > 65\text{GeV}$.
• The missing transverse energy in the event must exceed 55 GeV.
• Search in the transverse mass:

$$m_T = \sqrt{2p_T E_T^{\text{miss}}(1 - \cos \phi_{\ell\nu}),}$$

• Test for heavy spin-1 W' bosons.
 Event with one electron
• Select a pair of leptons
 – well isolated
 – matched to the primary vertex
 – E_T or $p_T > 30$ GeV
• Main background from Drell-Yan Z/γ production.
• Test di-lepton masses up to 5 TeV
• Search for heavy Z' bosons or contact interactions.

New physics could alter the ee and $\mu\mu$ mass distributions in two ways:

- a new resonance (Z') would create a bump
- non-resonant effects could change the shape

[ATLAS-CONF-2015-070]
Opposite-sign dileptons

}\textit{p} values:

\begin{itemize}
 \item \textbf{ATLAS} Preliminary $\sqrt{s} = 13 \text{ TeV}, \int L dt = 3.2 \text{ fb}^{-1}$
 \item Observed $p_{\text{e}0}'$, $Z'\rightarrow \ell\ell$
 \item Global significance for largest excess
\end{itemize}

Z' and contact interaction limits:

\begin{itemize}
 \item ATLAS Preliminary $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$
 \item $Z' \rightarrow \ell\ell$
 \item Expected limit
 \item Observed limit
 \item \tilde{Z}'_{SSM}
 \item Z'_{χ}
 \item Z'_{ν}
\end{itemize}
Highly sensitive channel for new neutral resonance with lepton-flavor violating decays

- Require different flavor leptons
- Main background from $t\bar{t} \rightarrow W^+W^-$
- Test for LFV in Z' models and quantum black holes in RS and ADD models.
- No excess observed.
di-jet, $\gamma\gamma$, γ-jet mass spectra

Tests for q^*, quantum black holes, Z'/W', heavy Higgs models
Searches for di-jet resonances

- Sensitive to new particles in s- and t-channels, respectively
 - any new particle produced at the LHC must couple to quarks/gluons
 - dijet search is sensitive to all such particles

- Jet selections:
 - $p_T(j_1) > 440$ GeV, $p_T(j_2) > 50$ GeV
 - compatibility with primary vertex

- Multi-jet background reduced with requirement on rapidity difference $|y^*| = |(y_1-y_2)/2| < 0.6$

- Di-jet mass resolution $\sim 2\%$ over full mass range
- Background modeled with a power law function.
- Look for a narrow resonance or an excess.
Searches for di-jet resonances

ATLAS

- Data
- SM
- $\Delta m, \eta_L = +1, \Lambda = 12 \text{ TeV}$
- $\Delta m, \eta_L = -1, \Lambda = 17 \text{ TeV}$
- QBH (QBH), $M_{\text{qb}} = 8.0 \text{ TeV}$

Theoretical uncertainties
Total uncertainties

4.6 < m_{jj} < 5.4 TeV
4.0 < m_{jj} < 4.6 TeV
3.4 < m_{jj} < 4.0 TeV
3.1 < m_{jj} < 3.4 TeV
2.8 < m_{jj} < 3.1 TeV
2.5 < m_{jj} < 2.8 TeV

Limits on benchmark Gaussian signals:
- The m(jj) region above 5.4 TeV was previously unexplored.
- Large improvements in the exclusion limits over Run I.

<table>
<thead>
<tr>
<th>Model</th>
<th>95% CL Exclusion limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum black holes, ADD (BLACKMAX generator)</td>
<td>5.6 TeV 8.1 TeV 8.1 TeV</td>
</tr>
<tr>
<td>Quantum black holes, ADD (QBH generator)</td>
<td>5.7 TeV 8.3 TeV 8.3 TeV</td>
</tr>
<tr>
<td>Quantum black holes, RS (QBH generator)</td>
<td>-- 5.3 TeV 5.1 TeV</td>
</tr>
<tr>
<td>Excited quark</td>
<td>4.1 TeV 5.2 TeV 4.9 TeV</td>
</tr>
<tr>
<td>W^*</td>
<td>2.5 TeV 2.6 TeV 2.6 TeV</td>
</tr>
<tr>
<td>Contact interactions ($\eta_{LL} = +1$)</td>
<td>8.1 TeV 12.0 TeV 12.0 TeV</td>
</tr>
<tr>
<td>Contact interactions ($\eta_{LL} = -1$)</td>
<td>12.0 TeV 17.5 TeV 18.1 TeV</td>
</tr>
</tbody>
</table>

\[\text{di-jet results} \]

\[\text{• Large improvements in the exclusion limits over Run I.} \]
• Test quantum black holes (QBH) and excited quark models
• Events are selected with a well isolated photon. Both the photon and jet must have $E_T > 150$ GeV
• γ+jet mass resolution is $\sim 2.5\%$ up to 6 TeV
• Exclusion limits surpass Run I analysis.
- Select two isolated photons
- Photon energy calibrated using $Z \rightarrow ee$ events
- Energy selections relative to the signal mass
- Signal efficiencies range between 20-45% depending on the mass and production mechanism
- Main background is from non-resonant di-photon (90%) and jet (10%) production
• Run II shows some excess at \(m(\gamma\gamma) \sim 750 \) GeV
• Significance: local \(\sim 3.6\sigma \), global \(\sim 2.0 \) sigma, estimated using a narrow width signal model.
• Using width \(\Gamma \sim 45 \) GeV gives larger significances: 3.9\(\sigma \) local (2.3\(\sigma \) global)
• Run I analysis did not see excess, but is still compatible within 2.3\(\sigma \) of the current result assuming gluon fusion production.

Exclusion Limits

```latex
\begin{align*}
& \text{ATLAS Preliminary} \\
& \gamma\gamma = 13 \text{ TeV, } 3.2 \text{ fb}^{-1} \\
& 95\% \text{ CL Upper Limit on } \sigma_{el} \times \text{BR (fb)}
\end{align*}
```

Local p-value in NWA

```latex
\begin{align*}
& \text{ATLAS Preliminary} \\
& \gamma\gamma = 13 \text{ TeV, } 3.2 \text{ fb}^{-1} \\
& \text{Local p-value}
\end{align*}
```
• successful commissioning of the ATLAS detector upgrade for Run-2
• early SUSY searches performed with 3.3 fb\(^{-1}\) at 13 TeV
 - exclude \(m(\tilde{g})\) up to 1.8 TeV
 - exclude \(m(\tilde{q}_{1,2})\) up to \(\sim 1\) TeV
 - exclude \(m(\tilde{b}_1)\) up to \(\sim 840\) GeV

 ⇒ significantly improves exclusion limits from Run-1

- Excess of 2.2 \(\sigma\) in the \(Z+E_T\) analysis, after 3 \(\sigma\) in Run-1
ATLAS is pursuing a broad search for exotic phenomena

Some searches have already been updated using the 2015 data
- thanks to the increased LHC energy, Run 1 sensitivity to many signals has already been exceeded with $\sim 3 \text{ fb}^{-1}$

Unfortunately, few surprises so far but there is the diphoton excess

Still to come:
- updated searches for many other new phenomena
- including follow up on some of the most interesting results from Run 1
BACK UP SLIDES
Physics Object Selection

• Jets:
 – Reconstructed from calorimeter energy clusters using the anti-k_T algorithm with radius parameter $R = 0.4$
 – Jets are reclustered with $R = 1$ to search for boosted top quarks
 – Corrected for avg. energy deposition from pile-up (= multiple collisions, averaging 14 in 2015)
 – Jet energy scale calibrated with detector response from MC and 8 TeV data
 – Event rejected if contains jet identified as due to noise or non-collision

• b-jets:
 – Tagged by multivariate algorithm using the impact parameters of tracks in the jet, and the presence and flight paths of displaced vertices from b/c hadrons

• Electrons:
 – Matching EM calorimeter clusters to inner-detector tracks & TRT threshold

• Muons:
 – Matching tracks in the muon spectrometer and inner detector
• **Physics-object overlap removal:**
 - If 2 objects \((e, \mu, \text{jet}, \text{or } b\text{-jet})\) are nearby, indicating mis-identification, one of them is discarded according to an optimized algorithm.

• **Missing transverse energy:**

 \[
 \vec{p}_T^{\text{miss}} = -\left(\sum_{\text{physics objects}} \vec{p}_T + \sum_{\text{other PV tracks}} \vec{p}_T \right)
 \]

 \[
 \text{MET} \equiv E_T^{\text{miss}} = \left| \vec{p}_T^{\text{miss}} \right|
 \]

• **Scalar \(p_T\) sum**

 \[
 H_T = \sum_{\text{physics objects}} p_T
 \]

• **Effective mass:**

 \[
 m_{\text{eff}} = \sum_{\text{physics objects}} p_T + E_T^{\text{miss}}
 \]
Common Analysis procedures

• Define signal regions (SRs)
 – Based on \(N_{\text{leptons}}, N_{\text{jets}}, N_{b-jets} \) with \(T \) cuts, \(H_T \), MET, \(m_{\text{eff}} \), etc.
 – Targeting different regions in SUSY parameter space

• Estimate background for each SR in control regions (CRs)
 – Usually using Monte Carlo distributions to relate CR yields to SR yields
 – Background estimate from CRs validated using validation regions (VRs)
 – Smaller backgrounds often obtained from MC

• If no excess, set limits using the CLs prescription, accounting for systematic uncertainties:
 – Finite MC statistics
 – Theory, e.g., models used for background shapes
 – Jet energy scale and resolution
 – Lepton / b-jet ID efficiencies and purities