New algorithms for Flavour Tagging at the LHCb experiment

Davide Fazzini on behalf of the LHCb collaboration
Università degli Studi di Milano Bicocca & INFN

- Measurements of flavour oscillations and time-dependent CP asymmetries of neutral B mesons require the identification of the flavour of the meson at production (flavour tagging).
- Opposite-side (OS) algorithms exploit the main b → 5 quark production mechanism in pp collisions:
 - production flavour of the signal B is opposite to that of the other B hadron in the event, thus the decay products of the other B hadron can be used for flavour tagging.
- Same-side (SS) algorithms exploit the charge correlation between the two meson flavour and the particles produced in association with the b hadron hijacking.

Tagging Algorithms

Flavour tagging variables

- **OS algorithms**
 - Muon/Electron
 - Kaon
 - Charm
 - Vertex Charge
- **SS algorithms**
 - Kaon
 - Pion
 - Proton

The function \(\omega(\eta) \) is used to calibrate the mistag probability \(\eta \) to provide an unbiased estimate of the mistag fraction.

Development of new SS Taggers

Tagger training
- The SS taggers apply a set of preselection cuts to select the tagging candidates.
- Combine their geometric and kinematic variables by means a Multi-Variate Analysis (MVA) to choose the best tagging candidate.

SS Kaon NN
- SSK NN improves the already available SSK cut-based tagger [7]
- New algorithm optimized with \(B_s \to \phi K^0 \) decays from Run 1 data and simulations [8]
- Based on two Neural Networks (NN) (trained with simulations)
 - NN1 trained to recognize kaons produced in the b quark hadronization
 - NN2 combines the tracks selected by NN1 to assign the tag decision and \(\eta \) (trained with simulation and calibrated with data)

SS Pion BDT/Proton BDT (preliminary)
- SSK NN improves the already available SSK cut-based tagger [9]
- First development and use of a SSS tagger
- New algorithm optimized with \(B^0 \to D^- \pi^+ \) data (8 TeV)
- Based on a MVA using a Boost Decision Tree (BDT)
 - BDT trained with data (oscillated events reduced by a cut at \(t < 2.2 \) ps) exploits the charge correlation of the SS tracks with the B decay mode \((\pi^- B^+ , B^- \pi^+) \)
 - The candidate with the highest BDT output is chosen as best candidate
 - 3rd order polynomial \(\eta(BDT \text{ output}) \) is used to evaluate the predicted mistag

SSK results
- Tagging power improved by 50% compared to the previous SS tagger
- SSK NN calibrated also on \(B_s^0 \to B^- K^- \)
- Assume that \(B_s^0 \) and \(B_s^+ \) have the same hadronization process
- \(B_s^0 \to B^+ K^- \) strong decay: the charge of \(B^+ \) determines the flavour of the \(B_s^0 \)

Physics results

Measurement of sin(2β)
- The time-dependent CP asymmetry accesses the \(\beta \) angle of the CKM unitary triangle
 - \(A_{CP}(t) = S \sin(\Delta m t) - C \cos(\Delta m t) \)
 - Use \(B^0 \to D^- \pi^+ \) decays from Run 1 dataset
 - Tagger: OS+SSK NN

Measurements of \(\phi_\epsilon \)
- \(\phi_\epsilon \Rightarrow \) CP-violating weak mixing phase of \(B_1 \)
- Use \(B^0 \to J/\psi K^0 K^- \), \(B_s^0 \to J/\psi \pi^- \pi^+ \)
 - \(B_s^0 \to D_s^+ D_s^- \) decays from Run 1 dataset
 - Tagger: OS+SSK NN

SS taggers apply a set of preselection cuts to select the tagging candidates
- Combine their geometric and kinematic variables by means a Multi-Variate Analysis (MVA) to choose the best tagging candidate

SS Kaon NN
- SSK NN improves the already available SSK cut-based tagger [7]
- New algorithm optimized with \(B_s \to \phi K^0 \) decays from Run 1 data and simulations [8]
- Based on two Neural Networks (NN) (trained with simulations)
 - NN1 trained to recognize kaons produced in the b quark hadronization
 - NN2 combines the tracks selected by NN1 to assign the tag decision and \(\eta \) (trained with simulation and calibrated with data)

SS Pion BDT/Proton BDT (preliminary)
- SSK NN improves the already available SSK cut-based tagger [9]
- First development and use of a SSS tagger
- New algorithm optimized with \(B^0 \to D^- \pi^+ \) data (8 TeV)
- Based on a MVA using a Boost Decision Tree (BDT)
 - BDT trained with data (oscillated events reduced by a cut at \(t < 2.2 \) ps) exploits the charge correlation of the SS tracks with the B decay mode \((\pi^- B^+ , B^- \pi^+) \)
 - The candidate with the highest BDT output is chosen as best candidate
 - 3rd order polynomial \(\eta(BDT \text{ output}) \) is used to evaluate the predicted mistag

SSπ and SSp results (preliminary)
- Tagging power improvement of 60% compared to the previous SSS tagger
- SSS and SSp responses can be combined into a single SS tagger response
- Combining SS and OS taggers improves the tagging power by about 45%
- Validation of the performance in a different control channel: \(B^0 \to K^- \pi^+ \)
 - Lower tagging performances (softer \(B p_j \) distribution)
 - Predicted mistag \(\eta \) calibrated

References

[5] H. Aihara et al., New algorithms for Flavour Tagging at the LHCb experiment. Università degli Studi di Milano Bicocca & INFN.