Extended Scalar Searches at ATLAS & CMS

Allison McCarn (University of Michigan)
On behalf of the CMS and ATLAS Collaborations

Rencontres de Moriond EW 2016
Beyond the Standard Model

The observed Higgs boson at 125 GeV could be only the beginning.

A few examples out of many...

Higgs Triplet:
An additional scalar triplet results in charged, doubly-charged, and neutral bosons.

Two-Higgs Double Models (2HDM):
Additional Higgs Doublet gives rise to 5 Higgs bosons (H,h,A,H±)

2HDM+S:
Two Higgs Doublets and an additional complex singlet (e.g. NMSSM)

Electroweak Singlet (EWS):
Additional singlet, resulting in 2 CP-even bosons.

Minimal Supersymmetric Standard Model:
Higgs Sector is Type-II 2HDM. Current common benchmark is hMSSM.

BSM physics was not observed in run-1, but there are still many possible models to be investigated in run-2.
Run-1 Results/Run-2 Prospects

• Many searches were performed in run-1, with 7 and 8 TeV centre-of-mass energy at the LHC, but physics beyond the Standard Model has not yet been observed.

• An example of where we stand and hopes for the future of the LHC can be seen in the hMSSM overlay and prospect plots.
 – Much parameter space is excluded, but there is still room for high mass Higgs to be found!

In 2015, ATLAS collected 3.2 fb⁻¹ and CMS collected 2.8 fb⁻¹ of data at 13 TeV!

This is already enough in many cases to exceed run-1 sensitivity!
Beyond the Standard Model Searches in this Presentation

Many searches for run-2, as well as a few final searches for run-1, from ATLAS, CMS, and both.

Charged Higgs
- $H^\pm \rightarrow \tau \nu$ (13 TeV)
- $H^\pm \rightarrow tb$ (8 TeV)
- $\phi^{\pm\phi^{\pm}} \rightarrow lll\nu/4l$ (8 TeV)

Neutral Higgs
- $H \rightarrow \tau\tau$ (13 TeV)

Higgs-to-Higgs
- $H \rightarrow 2a$ (8 TeV)
- $H \rightarrow ZA$ (13 TeV)
- $A \rightarrow Zh(125)$ (13 TeV)

Di-Higgs
- $H \rightarrow hh \rightarrow bb\gamma\gamma$ (13 TeV)
- $H \rightarrow hh \rightarrow bb\tau\tau$ (8/13 TeV)

Dibosons
- $H \rightarrow ZZ \rightarrow 4l$ (13 TeV)
- $H \rightarrow ZZ \rightarrow ll\nu\nu$ (13 TeV)
- Boosted Resonances (13 TeV)
 - $H \rightarrow ZZ \rightarrow llqq$ (13 TeV)
 - $ZH, H \rightarrow inv$ (13 TeV)
 - $X \rightarrow Z\gamma$ (13 TeV)
Recent vs = 8 TeV Results
In a 2HDM+S model, there are 2 singlet states:
- CP-odd scalar a
- CP-even s

BR($h \rightarrow$ BSM) < 0.34, so the decay to 2a can be sizeable.

Recent results from CMS for $h \rightarrow 2a \rightarrow 2b2\mu$ and $h \rightarrow 2a \rightarrow 2\mu2\tau$!

Current channels include:
- $h \rightarrow 2a \rightarrow 2b2\mu$ (CMS-PAS-HIG-14-041)
- $h \rightarrow 2a \rightarrow 4\mu$ (CMS: Phys. Lett. B 752 (2016) 221)
- $h \rightarrow 2a \rightarrow 4\tau$ (CMS-PAS-HIG-14-022, CMS: JHEP 01 (2016) 079)
- $h \rightarrow 2a \rightarrow 4\gamma$ (ATLAS: CERN-PH-EP-2015-187)
2HDM+S: Search for $h(125) \rightarrow 2a$

$h \rightarrow 2a \rightarrow 2b2\mu$:
2 b-jets, 2 μ, E_T^{miss} significance < 6
$\left| M_{bb\mu\mu} - 125 \right| < 25$ GeV

Signal Modeling: Weighted sum of Voigt profile and Crystal ball.

Background Modeling: Polynomial functions, fit to $m_{\mu\mu}$ in data.

$h \rightarrow 2a \rightarrow 2\mu2\tau$
5 final states: $\mu\mu\tau_e\tau_e$, $\mu\mu\tau_\mu\tau_\mu$, $\mu\mu\tau_{\text{had}}\tau_e$, $\mu\mu\tau_{\text{had}}\tau_\mu$, $\mu\mu\tau_{\text{had}}\tau_{\text{had}}$

$\left| M_{\tau\tau\mu\mu} - 125 \right| < 25$ GeV
$(M_{\mu\mu} - M_{\tau\tau})/M_{\mu\mu} < 0.8$
$\left| M_{\text{vis}_{ee\mu\mu}} - 125 \right| > 15$ GeV

Irreducible backgrounds from MC, reducible from data-driven methods.
Predicted in models with extended Higgs Sector (e.g. 2HDM):

- H± dominantly produced in association with a top quark.
- H± → tb is a dominant decay mode for heavy H±.

Search in lepton+jets final state. Fit is performed on 5 regions:
- H_T^{had} in 4 Control Regions: [4j(2b), 5j(2b), ≥6j(2b), 4j(≥3b)]
- BDT in 1 Signal Region: [≥5j(≥3b)]

BDT includes H_t^{had}, lead jet p_T, m_{bb} of 2 b-jets closest in ΔR, second Fox-Wolfram moment, and average ΔR between all b-jet pairs.
Higgs Triplets: Search for $H^{\pm\pm}$

- $H^{\pm\pm}$ is predicted by models with a Higgs triplet.

- This search is for associated production or pair-produced left-handed $H^{\pm\pm}$ into 3 or 4 leptons, respectively.
Scalar Resonance: $H \rightarrow hh \rightarrow bb\tau_{had}\tau_{had}$

2 hadronic τ_{had} and 2 jets
$80 < m_{\tau\tau} < 140$ GeV and $80 < m_{jj} < 170$ GeV
m_{HH} calculated using a kinematic fit

Backgrounds
Multi-jet: Data-driven methods
$Z/\gamma^* \rightarrow \tau_{had}\tau_{had}$: Embedding of $\mu\mu$ data events
Others: Simulation

Fit to three regions with 0, 1, or 2 b-tagged jets.

CMS Preliminary 18.3 fb$^{-1}$ (8 TeV)

2jet0tag
- Resonant
- $X \rightarrow HH \rightarrow bb\tau\tau$
- Observed
- $Z \rightarrow \tau\tau$
- $t\bar{t}$
- Electroweak
- Multijets
- SM Higgs
- Uncertainty

2jet1tag
- Resonant
- $X \rightarrow HH \rightarrow bb\tau\tau$
- Observed
- $Z \rightarrow \tau\tau$
- $t\bar{t}$
- Electroweak
- Multijets
- SM Higgs
- Uncertainty

2jet2tag
- Resonant
- $X \rightarrow HH \rightarrow bb\tau\tau$
- Observed
- $Z \rightarrow \tau\tau$
- $t\bar{t}$
- Electroweak
- Multijets
- SM Higgs
- Uncertainty

See Seth Zenz’s talk for non-resonant analysis.
$\sqrt{s} = 13$ TeV Searches:
Fermionic Decays
Search for $H^\pm \rightarrow \tau \nu$

H^\pm predicted in 2HDM/MSSM:

✓ H^\pm dominantly produced in association with a top quark.

✓ $H^\pm \rightarrow \tau \nu$ decay channel represents a clean signature and substantial BR ($\sim 10\%$) in several MSSM benchmarks.

Search is for the decays:

$$
\begin{align*}
g\bar{b} & \rightarrow [\bar{t}] [H^+] \rightarrow [q\bar{q}b] [\tau^+_{\text{had-vis}} + \nu_\tau] \\
gg & \rightarrow [\bar{t}b] [H^+] \rightarrow [(q\bar{q}b)b] [\tau^+_{\text{had-vis}} + \nu_\tau]
\end{align*}
$$

with the final discriminating variable:

$$m_T = \sqrt{2p_T^\tau E_{\text{miss}}^\tau (1 - \cos \Delta \phi_{\text{had-vis,miss}})}$$
Search for $H^\pm \rightarrow \tau \nu$

Backgrounds:
- **Jet → τ fakes** (multi-jet: data-driven)
- **Events with true τ** (tt, W+jets: from MC, validated in CR)
- **Events with lepton → τ fakes** (top, V+jets, diboson: Shape from MC, norm. from data. ~5% of background.)

Event Selection
- E_T^{miss} trigger
- ≥3 jets including ≥1 b-tagged jet
- 1 τ and no e or μ
- $E_T^{\text{miss}} > 150$ GeV
- $m_T > 50$ GeV

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$
$H^+ \rightarrow \tau \nu$; hMSSM scenario
- Observed exclusion
- Expected exclusion
- ± 1σ
- ± 2σ

Observed exclusion
Expected exclusion
± 1σ
± 2σ
H$^+$ hMSSM tanβ=60

Run 1 result
- Observed
- Expected

Observed (CLs)
Expected (CLs)

CERN-PH-EP-2016-056
Search for $H/A \rightarrow \tau\tau$

$H\rightarrow\tau\tau$ provides sensitivity in MSSM at high $\tan\beta$, and in 2HDM at the alignment limit.

Analysis targets two channels with different τ decay modes.

\(\tau_{\text{lep}}\tau_{\text{had}}\) Event Selection

- Single lepton triggers
- 1 τ and 1 OS e/\mu and $\Delta\phi(\tau, e/\mu) > 2.4$
- $M_T(e/\mu, \text{MET}) < 40 \text{ GeV}$ or $> 150 \text{ GeV}$
- In e-channel: $m_{\text{vis}} < 80$ and $> 110 \text{ GeV}$

\(\tau_{\text{had}}\tau_{\text{had}}\) Event Selection

- Single τ_{had} trigger
- 2 τ_{had} with OS charge
- $\Delta\phi(\tau_{\text{had},1}, \tau_{\text{had},2}) > 2.7$

Final discriminant in both channels

\[
m_T^{\text{total}} = \sqrt{m_T^2(\tau_1, \tau_2) + m_T^2(\tau_1, E_T^{\text{miss}}) + m_T^2(\tau_2, E_T^{\text{miss}})}
\]
Search for H/A → ττ

Backgrounds

✓ **True τ backgrounds** (e.g. Z → ττ, tt) are taken from simulation.

✓ **Jet → τ backgrounds** (e.g. W+jets, multi-jets) are estimated using data-driven methods.

No evidence for BSM Higgs, but sensitivity already exceeds run-1.
$\sqrt{s} = 13$ TeV Searches: Di-Higgs
Search for $H \rightarrow hh \rightarrow bb\gamma\gamma$

hh production can be resonantly enhanced by many BSM models (Singlet, MSSM, etc.).

- $bb\gamma\gamma$ chosen due to high BR($h \rightarrow bb$) and clean $\gamma\gamma$ signature.
- ATLAS has also searched for $hh \rightarrow 4b$, covered in Max Bellomo’s talk tomorrow.

Event Selection

- 2γ within $105 < m_{\gamma\gamma} < 160$ GeV
- 2 central jets within $95 < m_{jj} < 135$ GeV
- 2 (0) b-tag as SR (CR) at 85% efficiency
- bb 4-momenta scaled by m_h/m_{bb}

\[|m_{\gamma\gamma} - m_h| < 2\sigma(m_{\gamma\gamma}) \]

$M_{bb\gamma\gamma}$ within window of 95% signal efficiency

See Seth Zenz’s talk for non-resonant analysis.
Search for \(H \rightarrow hh \rightarrow bb\tau\tau \)

Search for three channels:
\[\tau_{\text{had}}\tau_\mu, \tau_{\text{had}}\tau_e \] and \(\tau_{\text{had}}\tau_{\text{had}} \)

Exactly two OS objects, as above
2 b-tagged jets

Final mass variable \(m_H \) constructed using a kinematic fit.

Backgrounds

- **Multi-jet**: estimated using data-driven methods

- **Z+jets**: MC corrected using data control regions.

- **tt**: MC, shape corrected by top pT reweighting.

- **Others** (W+jets, single top, diboson) from MC.
Search for H→hh→bbττ

Search for three channels: τ_hadτ_μ, τ_hadτ_e and τ_hadτ_had

Exactly two OS objects, as above

2 b-tagged jets

Final mass variable m_H constructed using a kinematic fit.

Backgrounds

- **Multi-jet**: estimated using data-driven methods

- **Z+jets**: MC corrected using data control regions.

- **tt**: MC, shape corrected by top pT reweighting.

- **Others** (W+jets, single top, diboson) from MC.

See Seth Zenz’s talk for non-resonant analysis.
Vs = 13 TeV Searches: Higgs to Bosons
Search for $H \rightarrow ZZ \rightarrow 4l$

The 4l final state gives a clean signature with low background, predicted in EWS and 2HDM. The search is for a resonance of $m_H = 140 (200)-1000$ GeV for CMS (ATLAS).

Search is based on selection from $h(125) \rightarrow ZZ \rightarrow 4l$ analysis.
Search for $H \rightarrow ZZ \rightarrow 4l$

The results have also been interpreted in Type-I and Type-II 2HDM.

Search is based on selection from $h(125) \rightarrow ZZ \rightarrow 4l$ analysis.
Search for $H \rightarrow ZZ \rightarrow ll\nu\nu$

Searching for an additional scalar boson, as predicted in EWS/2HDM. The search is for a narrow resonance of $m_H = 300$-1000 GeV (ATLAS) or 200-1500 GeV (CMS).

In both cases, search is for 2 leptons (e or μ) and high E_T^{miss}.

Backgrounds

- **ZZ/WZ**: From simulation, WZ scaled using data-driven methods (ATLAS)
- **Others**: Predicted using data-driven methods.

CMS: Data-driven Z+jets prediction

ATLAS: WZ Control Region
Event Selection

- 2 same flavor, opposite sign charge leptons
- $76 < m_{ll} < 106$ GeV and $E_T^{\text{miss}} > 120$ GeV
- $\Delta R_{ll} < 1.8$ and $\Delta \phi(Z, E_T^{\text{miss}}) > 2.7$
- Fractional p_T difference < 0.2
- $\Delta \phi(\text{jet (pT > 100 GeV)}, E_T^{\text{miss}}) > 0.4$
- $Z_{pT}/M_{T} < 0.7$ and no b-jet

Final Discriminant:

$$m_Z^2 = (\sqrt{m_Z^2 + |p_T^1|^2} + \sqrt{m_Z^2 + |E_{T}^{\text{miss}}|^2})^2 - |p_T^1 + E_{T}^{\text{miss}}|^2$$

Graph:

ATLAS Preliminary

13 TeV, 3.2 fb$^{-1}$

- **H → ZZ → llvv**

95% Limit on $\sigma_{ggF} * \text{BR}(H → ZZ) [fb]$

- **Expected Median**
- **Expected ±1σ**
- **Expected ±2σ**
- **Observed**

Data/SM Pred.

ATLAS Preliminary

- ggF H (300 GeV)
- ggF H (600 GeV)
- ggF H (1000 GeV)
- W→ZZ
- Zgg
- Z(μν/μν)+jets
- WW/Z(ττ)+jets/WW
- 3W/2ZZ jets
- Triboson
- Fake Lepton

Stat. ± Syst. Unc.
Event Selection

2 same flavor, opposite sign charge leptons

$E_T^{\text{miss}} > 125 \text{ GeV}$ and $\Delta\phi(\text{nearest jet, } E_T^{\text{miss}}) > 0.5$

No b-tagged jets

3 Signal Region Categories:

- **VBF:** ≥ 2 forward jets with $|\Delta\eta| > 4$ and $m > 500$ GeV.
- $\geq 1 \text{ jets}:$ at least 1 jet, fails VBF
- $= 0 \text{ jets}:$ No jets.

Final Discriminant:

$$M_T^2 = \left(\sqrt{p_T(\ell\ell)^2 + M(\ell\ell)^2 + E_T^{\text{miss}}^2 + M_T^2} - (p_T(\ell\ell) + E_T^{\text{miss}}) \right)^2$$

EWS, VBF production
Several diboson resonance searches in ATLAS have also been interpreted in terms of a heavy Higgs-like boson.
 – For details of the analyses, see Max Bellomo’s talk Thursday.

Limits are set up to 3 TeV:
 • For $H \rightarrow WW \rightarrow l\nu qq$, $H \rightarrow ZZ \rightarrow llqq$ and $H \rightarrow ZZ \rightarrow \nu\nu qq$
 • In the narrow width approximation, as well as for widths ranging from 5-15%.
 • No evidence for boosted scalar resonances has been found in any channel.
Search for $H \rightarrow ZZ \rightarrow llqq$

Merged Analysis

2 same flavor leptons and 1 large-R jet ($p_T > 200$ GeV) consistent with Z decay

$$P_T(ll) > 0.3m_{ll}$$

Resolved Analysis

2 same flavor leptons and 2 small-R jets consistent with Z decay

$$\sqrt{P_T^2(\ell\ell) + P_T^2(jj)} / m_{\ell\ell jj} > 0.5$$

Two categories: 2 and <2 b-tagged jets
Motivated by supersymmetry, search is for a scalar boson, \(H \), with \(m = 110-600 \) GeV, decaying to invisible particles.

Analysis Selection

2 same flavor OS e or \(\mu \)

\[|m_{ll} - m_Z| < 15 \text{ GeV and } p_T^{ll} > 60 \text{ GeV} \]

\(\leq 1 \) jet, no b-jets or soft muons

\(E_T^{\text{miss}} > 100 \) GeV, \(\Delta \phi(\text{ll}, E_T^{\text{miss}}) > 2.8 \) and

\[|E_T^{\text{miss}} - p_T^{ll}| / p_T^{ll} < 0.4 \]

Final discriminating variable is:

\[m_T = \sqrt{2 p_T^{ll} E_T^{\text{miss}} (1 - \cos \Delta \phi(\text{ll}, E_T^{\text{miss}}))} \]

which must be > 200 GeV.
Search for A→Zh(125), h→bb

Searching for an additional pseudoscalar boson, as predicted in 2HDM. The search is for a narrow resonance of \(m_H = 200-2000 \) GeV.

Analysis Strategy

- Targeting A→Zh→ννbb/llbb
- Makes use of categories:
 1. 0/2-leptons
 2. \(p_T^Z < \) or \(> 500 \) GeV (defining the resolved/boosted transition)
 3. 1/2 b-tagged jets
- Final discriminant is invariant \(m_{llbb} \) for 2-lepton and for 0-lepton:

\[
 m_{T,Zh} = \sqrt{(E_T^h + E_{T,miss}^m)^2 - (p_T^Z + E_{T,miss}^m)^2}
\]

See talk in YSF4 by Carlo Pandini for more details.

Dominant backgrounds of Z+jets and ttbar are validated and constrained in control regions.
Search for $A \rightarrow Zh(125)$, $h \rightarrow bb$

Limits on ggF and b-associated production from simultaneous binned-likelihood fit for signal and control regions.
Motivated by 2HDM with twisted custodial symmetry, which gives a heavier scalar H and a lighter pseudoscalar A boson.

Analysis Strategy

A signal region (S) is defined for each m_A-m_H hypothesis in the plane of $m_{bb}-m_{llbb}$

tt and Drell-Yan processes are corrected through a fit to data of the m_{ll} distribution for events not in S.

The final limit is calculated from the single bin of S.
Limits are set on cross section times branching ratio for three m_H hypotheses, as a function of m_A.

$\sigma \times \text{BR} = 300\text{ GeV}$

$\sigma \times \text{BR} = 500\text{ GeV}$

$\sigma \times \text{BR} = 800\text{ GeV}$
Search for an additional neutral boson (X), with a narrow width.

Analysis Strategy

- **Z→ll (250-1500 GeV):**
 - 2 same flavor, **opposite sign leptons** consistent with Z.

- **Z→qq (720-2750 GeV):**
 - Jets reconstructed as a **single large-radius jet** with pT > 200 GeV.

- Both channels use Zγ invariant mass as a final discriminant.
Search for $X \rightarrow Z\gamma$

Background Modeling

- Dominant background is continuum production of $Z+\gamma$ (leptonic) and $\gamma + \text{jets}$ events (hadronic).

- In both, background is smoothly falling spectrum as a function of m_{inv}, parameterized as:

$$f_{\text{bkg}}(m_{\text{inv}}) = N (1 - x^k)^{p_1 + \xi p_2} x^{p_2}$$

Largest deviation from background is 2σ at 350 GeV.

Observed limits range between 295 fb at $m_X = 340$ GeV to 8.2 fb at $m_X = 2.15$ TeV.
In Summary

• There have already been a variety of searches for extended scalars at 13 TeV, but this is just the beginning!

• Searches investigate a variety of models (2HDM, 2HDM+S, MSSM, etc.) and many final states.

• 2016 should be an interesting year for Beyond-Standard-Model searches in high energy physics!

Public documents for analyses covered in this talk are either available now, or will become available in the following days.
Backup
Search for $H^\pm \rightarrow \tau \nu$

- The Background contributions are split up by the origin of the τ in the event:
 - Jet $\rightarrow \tau$ fakes (data-driven)
 - Events with true τ (from MC, validated in CR)
 - Events with lepton $\rightarrow \tau$ fakes (Shape from MC, norm. from data)

Event Selection

- E_T^{miss} trigger
- ≥ 3 jets including ≥ 1 b-tagged jet
- 1 τ and no e or μ
- $E_\text{T}^{\text{miss}} > 150$ GeV
- $m_\tau > 50$ GeV

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$

W $\rightarrow \tau \nu$ control region

Events / 5 GeV

Data / SM

m_τ [GeV]

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$

$t\bar{t}$ control region

Events / 5 GeV

Data / SM

m_τ [GeV]
A fake factor (FF) is measured in a multi-jet control region, defined as:

$$FF = \frac{N_{\text{fail}}}{N_{\text{pass}}}$$

where N_{fail} event τ candidates fail the full τ selection, and N_{pass} pass.

FF parameterized in:
- τ p_T
- τ decay mode,
- Light/heavy flavor bins based on b-tagging algorithm.

Final Contribution Defined by:

$$N_{\tau_{\text{had-vis}}}^{\text{fakes}} = \sum_i N_{\text{anti-}\tau_{\text{had-vis}}(i)} \times FF(i),$$
Final discriminant in both channels

\[
m_T^{\text{total}} = \sqrt{m_T^2(\tau_1, \tau_2) + m_T^2(\tau_1, E_T^{\text{miss}}) + m_T^2(\tau_2, E_T^{\text{miss}})}
\]

H → ττ provides sensitivity in MSSM at high tan β, and in 2HDM at the alignment limit. Analysis targets two channels with different τ decay modes.

τ_{lep} τ_{had} Event Selection

- Single lepton triggers
 - 1 medium τ, \(p_T > 20 \text{ GeV} \)
 - 1 medium, isolated e/μ, \(p_T > 30 \text{ GeV} \)
 - τ and e/μ of opposite sign charge
 - \(\Delta \phi(\tau, e/\mu) > 2.4 \)
 - \(M_{T}(e/\mu, \text{MET}) < 40 \text{ GeV or } > 150 \text{ GeV} \)

- In e-channel: \(m_{\text{vis}} < 80 \) and \(> 110 \text{ GeV} \)

τ_{had} τ_{had} Event Selection

- Single τ_{had} trigger
 - 2 τ_{had} with OS charge
 - No loose e/μ
 - \(\Delta \phi(\tau_{\text{had},1}, \tau_{\text{had},2}) > 2.7 \)

- Leading τ_{had} is medium, trigger-matched, \(p_T > 135 \text{ GeV} \)

- Subleading τ_{had} is loose, \(p_T > 55 \text{ GeV} \)
Search for H/A $\rightarrow \tau\tau$: τ_{lep} τ_{had} Backgrounds

True τ backgrounds ($Z\rightarrow\tau\tau$, tt) are taken from simulation. Jet\rightarrow\tau backgrounds are estimated using “Combined Fake Factor” Method

\[
\text{Combined FF} = \text{FF}_{W+jets} r_{W+jets} + \text{FF}_{QCD} r_{QCD}
\]

The Combined FF is applied to events where τ fails ID requirement.
Search for H/A $\rightarrow \tau\tau$: $\tau_{\text{had}}\tau_{\text{had}}$ Backgrounds

- True τ backgrounds ($Z\rightarrow\tau\tau$, tt) are taken from simulation.
- Jet$\rightarrow\tau$ backgrounds are estimated by applying fake rate from data in place of simulated τ ID response.
- Multi-jet backgrounds are estimated using a fake factor measured in a dijet CR.

Background estimation is validated in same-sign control region.
Expected and Observed events for the ATLAS high mass H→ZZ→4l analysis.
Search for $H \rightarrow hh \rightarrow bb\gamma\gamma$

- **Background:**
 - Continuum from data
 - SM h & hh from MC
 - Cut-and-count in 95% $m_{bb\gamma\gamma}$ window with data-driven continuum background:

$$N_{SR}^B = N_{SB} \frac{\epsilon_{m_{\gamma\gamma}}}{1 - \epsilon_{m_{\gamma\gamma}}} \epsilon_{m_{bb\gamma\gamma}}$$

0 events in mass window
Mass constraint does not dramatically change the background shape.

Limit in terms of # of events.
Search for $X \rightarrow Z\gamma$

Limits split into leptonic and hadronic.
Search for $X \rightarrow Z\gamma$

Comparison of ee and mumu signal resolution

ATLAS Simulation Preliminary

gg$\rightarrow X \rightarrow Z\gamma$, $Z \rightarrow \mu\mu$

$m_X=800$ GeV

$\sqrt{s}=13$ TeV

ATLAS Simulation Preliminary

gg$\rightarrow X \rightarrow Z\gamma$, $Z \rightarrow ee$

$m_X=800$ GeV

$\sqrt{s}=13$ TeV
Search for $H \rightarrow llv\nu$
Boosted Diboson Resonances

• Several diboson resonance searches in ATLAS have also been interpreted in terms of a heavy Higgs-like boson.
 – For details of the analyses, see Max Bellomo’s talk Thursday.

• Limits are set in the narrow width approximation, as well as for widths ranging from 5-15%.
Several diboson resonance searches in ATLAS have also been interpreted in terms of a heavy Higgs-like boson.

- For details of the analysis, see Max Bellomo’s talk Thursday.

Limits are set in the narrow width approximation, as well as for widths ranging from 5-15%.

Boosted Diboson Resonances

\[H \rightarrow ZZ \rightarrow \ell\ell q\bar{q} \]

\[H \rightarrow WW \rightarrow l\nu q\bar{q} \]