Measurement of the Inelastic Proton-Proton Cross Section at $\sqrt{s} = 13$ TeV with the ATLAS Detector at the LHC

The ATLAS Collaboration

Abstract

This Letter presents a measurement of the inelastic proton-proton cross section using 60 \(\mu \text{b}^{-1} \) of \(pp \) collisions at a center-of-mass energy \sqrt{s} of 13 TeV with the ATLAS detector at the LHC. Inelastic interactions are selected using highly efficient plastic scintillators in the forward region of the detector. A cross section of 68.2±1.5 mb is measured in the fiducial region $\xi = M_X^2/s > 10^{-6}$, where M_X is the largest invariant mass of the two hadronic systems separated by the largest rapidity gap in the event. For diffractive events this corresponds to cases where at least one proton dissociates to a system of mass larger than 13 GeV. The measurement agrees with a range of theoretical predictions. When extrapolated to the full phase space, the result is consistent with an inelastic cross section increasing with center-of-mass energy, as observed at lower energies.
The rise of the total proton-proton (pp) cross section with center-of-mass energy \(\sqrt{s} \), first predicted by Heisenberg [1] and observed by experiments at the CERN Intersecting Storage Rings [2], provides a probe of the non-perturbative regime of quantum chromodynamics (QCD). General arguments based on unitarity, analyticity, and factorization imply an upper bound (the Froissart bound [3–5]) on the high-energy behavior of total hadronic cross sections that prevents them from rising more rapidly than \(\ln^2(s) \).

This Letter presents a measurement of the inelastic cross section \(\sigma_{\text{inel}} \) using pp collisions at \(\sqrt{s} = 13 \) TeV with the ATLAS detector at the Large Hadron Collider (LHC). In inelastic interactions, one or both protons dissociate as a result of colored (non-diffractive) or colorless (diffractive) exchange. The fiducial region of this measurement excludes elastic pp scattering and diffractive dissociation processes in which neither proton is dissociated into a system of mass \(M_X > 13 \) GeV, or equivalently, \(\xi = M_X^2/s > 10^{-6} \). The measurement is reported for this fiducial region and after extrapolation to the total inelastic cross section using models of inelastic interactions. It is performed using two sets of scintillation counters in a dataset corresponding to an integrated luminosity of 60.1 \(\pm \) 1.1 \(\mu \)b\(^{-1} \) collected in June 2015. During this data-taking period, the mean number of pp collisions in the same LHC bunch crossing was 2.3 \(\times \) 10\(^{-3} \), and thus the contribution from multiple collisions is negligible.

Many experiments have measured \(\sigma_{\text{inel}} \) and found an increase with \(\sqrt{s} \) [6]. The previous measurement of \(\sigma_{\text{inel}} \) with the ATLAS detector at \(\sqrt{s} = 7 \) TeV [7] used the method employed in this letter in a fiducial region defined by \(\xi > 5 \times 10^{-6} \). The TOTEM and ATLAS collaborations also determined \(\sigma_{\text{inel}} \) at \(\sqrt{s} = 7 \) TeV using the optical theorem and a measurement of the elastic cross section with Roman pot detectors [8, 9]. The TOTEM Collaboration performed similar measurements at \(\sqrt{s} = 8 \) TeV [10, 11]. Using a variety of different techniques, the CMS, ALICE, and LHCb experiments have made measurements of \(\sigma_{\text{inel}} \) at \(\sqrt{s} = 7 \) TeV [12–14]. The ALICE Collaboration additionally measured it at \(\sqrt{s} = 2.76 \) TeV [13]. The Pierre Auger Collaboration measured the inelastic p-air cross section at \(\sqrt{s} = 57 \) TeV and extracted \(\sigma_{\text{inel}} \) using the Glauber model [15].

The ATLAS detector is a cylindrical particle detector\(^1\) composed of several subdetector layers [16]. The inner tracking detector (ID) comprises silicon pixel and strip detectors and a straw-tube tracker immersed in a 2 T magnetic field provided by a superconducting solenoid. Around the tracker there is a system of electromagnetic and hadronic calorimeters, which use liquid argon and lead, copper, or tungsten absorber for the electromagnetic and forward (|\(\eta \)| > 1.7) hadronic components of the detector, and scintillator-tile active material and steel absorber for the central (|\(\eta \)| < 1.7) hadronic component.

At \(z = \pm 3.6 \) m, thin plastic scintillation counters, named the minimum-bias trigger scintillators (MBTS), are installed on the front face of each endcap calorimeter. These detectors cover the region \(2.07 < |\eta| < 3.86 \). They are similar to those described in Ref. [16] but were rebuilt during 2014, when the coverage was slightly extended from \(2.08 < |\eta| < 3.75 \) after the previous run at \(\sqrt{s} = 7 \) TeV. The MBTS are divided into inner (149 < \(r < 445 \) mm) and outer (444.5 < \(r < 895 \) mm) octagonal rings, with 8 counters in the inner ring and 4 counters in the outer ring.

The ATLAS experiment uses a hardware-based first-level trigger to select events at about 75 kHz and a software-based high-level trigger to record events at about 1 kHz for offline analysis. Three trigger configurations were used to collect data for this analysis. The primary triggers use the MBTS detector and constant-fraction discriminators to select events when two proton bunches collide in the detector. To

\(^1\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the center of the LHC ring, and the \(y \)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \).
facilitate background studies, data were also collected with the same selection when no proton bunch ("empty") or a single proton bunch from only one of the two beams ("single beam") was passing through the center of ATLAS. All these triggers require at least one MBTS hit above threshold. Two additional triggers were used to collect data to determine the efficiency of the MBTS trigger, requiring either hits in a forward (5.6 < |η| < 5.9) Cerenkov detector (LUCID) or a far forward (|η| > 8.4) tungsten-scintillator calorimeter detector (LHCf [17]) located at z = ±17 m and ±140 m, respectively. The LHCf detector is an independent detector, but for the runs considered in this analysis, its trigger signals were incorporated into the ATLAS readout.

Several Monte Carlo (MC) simulation samples were produced to correct the fiducial measurement and to compare to the data. The detector response is modeled using a simulation based on Geant4 [18–20]. The data and MC simulated events are passed through the same reconstruction and analysis software.

The primary MC samples are based on the Pythia8 generator [21, 22] either with the A2 [23] set of tuned underlying-event parameters and the MSTW 2008 LO PDF set [24] or with the Monash [25] set of tuned underlying-event parameters and the NNPDF 2.3 LO PDF set [26]. The samples are divided into four components: single-dissociation (SD, pp → pX), double-dissociation (DD, pp → XY), central-dissociation (CD, pp → pXp), all of which involve colorless exchange, and non-diffractive dissociation (ND) wherein color flow is present between the two colliding protons. For all dissociation event types, the Monash tune is used by default.

Pythia8 uses a pomeron-based diffraction model [27] to describe colorless exchanges between two protons. The default model has a pomeron flux model by Schuler and Sjöstrand (SS) [28, 29]. Alternative MC samples are generated with the pomeron flux model of Donnachie and Landshoff (DL) [30] and with the minimum-bias Rockefeller (MBR) simulation of pp interactions [31]. In the DL model, the pomeron Regge trajectory is given by \(\alpha(t) = 1 + \varepsilon + \alpha' t \), where \(\varepsilon \) and \(\alpha' \) are free parameters. In most of the samples used for this analysis, the value of \(\alpha' \) is 0.25, the Pythia8 default. The \(\varepsilon \) parameter is varied from 0.06 to 0.10 (the Pythia8 default is 0.085). An additional sample produced with \(\alpha' = 0.35 \) is found to be statistically consistent with the \(\alpha' = 0.25 \) default samples in each aspect of this analysis. The ranges of \(\varepsilon \) and \(\alpha' \) considered are motivated by previous total, inelastic, elastic, and diffractive cross-section measurements, including measurements of low-mass diffraction by the ATLAS and CMS collaborations [32, 33]. For the DL and SS models the CD component is neglected. The MBR model is tuned to data as described in Ref. [31], and unlike the other models of diffraction, includes a small CD component.

Two other event generators, Eros LHC and QGSJet-II, are also used to simulate pp collisions. The Eros LHC event generator [34] uses a “cut pomeron” model for diffraction and differs significantly from Pythia8 in its modeling of hadronization and the underlying event. The QGSJet-II event generator [35, 36] uses Reggeon field theory to describe pomeron-pomeron interactions. Both Eros LHC and QGSJet-II have been developed primarily to model cosmic-ray showering in the atmosphere.

The fiducial region of the measurement is determined from MC simulation. In each generated event, the largest rapidity gap between any two final-state hadrons is used to define the boundary between two collections of hadrons. These collections define the dissociation systems in a generalized manner applicable to any event sample. The invariant mass of each collection is calculated, and the larger of the two masses, denoted \(M_X \), is used to define \(\xi = M_X^2/s \). The variable \(\xi \) is constrained to be \(> 6 \times 10^{-9} \) by the elastic limit of \(m_p^2/s \) where \(m_p \) is the mass of the proton. This measurement is restricted to \(\xi > 10^{-6} \), the region in which the event selection efficiency exceeds 50%.

Two samples of data events passing the MBTS trigger requirements are selected: an inclusive sample and a single-sided sample. The inclusive selection requires at least two MBTS counters with a charge...
above a threshold of 0.15 pC ($n_{MBTS} \geq 2$). This threshold is chosen to be well above the electronic noise level of the counters. Requiring two hits rather than one hit substantially reduces background due to collision-induced radiation and activation. To constrain the diffractive component of the cross section and to reduce the uncertainty in extrapolation to σ_{inel}, an additional single-sided selection is defined, requiring hits above threshold in at least two counters on one side of the detector and no hits on the other. In the data, 4,159,074 events pass the inclusive selection and 442,192 events pass the single-sided selection.

The fiducial cross section is determined by

$$\sigma_{fid}^{inel}(\xi > 10^{-6}) = \frac{N - N_{BG}}{\epsilon_{trig} \times L} \times \frac{1 - f_{\xi<10^{-6}}}{\epsilon_{sel}},$$

where N is the number of observed events passing the inclusive selection, N_{BG} is the number of background events, ϵ_{trig} and ϵ_{sel} are factors accounting for the trigger and event selection efficiencies, $1 - f_{\xi<10^{-6}}$ accounts for the migration of events with $\xi < 10^{-6}$ into the fiducial region, and L is the integrated luminosity of the sample.

There are several sources of background, including interactions between the beam and residual gas in the beam pipe (beam-gas interactions), interactions between the beam and collimators upstream of the detector, which can send charged particles through the detector parallel to the beam (beam-halo events), collision-induced radiation, and activation backgrounds. Backgrounds from cosmic rays and instrumental noise are negligible. The beam-related background components are extracted from single-beam events and dominate the total background. They are normalized by scaling the number of selected single-beam events by a factor of $37^4 \times 2$, accounting for the 37 colliding pairs of bunches and 4 bunches producing the single-beam data in this run. The factor of 2 accounts for the presence of two colliding bunches. The number of protons per bunch producing these single-beam events agrees with that in the colliding bunches to within 10%. The radiation and activation-induced backgrounds are implicitly part of this background estimate. Double-counting of these components is removed using estimates from events read out when no bunches were passing through the center of the detector. The total background contributions to the inclusive and single-sided data samples are determined to be 1.2% and 5.8% respectively. The classification of single-sided events as double-sided due to noise and other backgrounds is estimated to be below 0.1%. A systematic uncertainty of 50% is assigned to the background based on studies of the background composition and the relative contributions of the beam-gas, beam-halo, and radiation and activation components. This uncertainty is treated as fully correlated between the single-sided and inclusive selections.

The trigger efficiency for events passing the inclusive selection, ϵ_{trig}, is measured with respect to events selected with the LUCID and LHCf detectors after subtracting the background as a function of the number of MBTS hits above threshold. A trigger efficiency of 99.7% is measured for the inclusive event sample, and 97.4% for the single-sided sample. In both cases the statistical uncertainty is below 0.1%. The measurements based on the LUCID and LHCf detectors agree within ±0.3%, and this difference is taken as a systematic uncertainty.

The ratio of the number of events passing the single-sided event selection to the number passing the inclusive selection (R_{SS}) is used to adjust, for each model separately, the fractional contribution of the single- and double-diffractive dissociative cross section (σ_{SD} + σ_{DD}) to the inelastic cross section, $f_D = (\sigma_{SD} + \sigma_{DD})/\sigma_{inel}$ [7].
The measured value is $R_{SS} = 10.4\%$ with a total uncertainty of $\pm 0.4\%$. The dominant systematic uncertainty arises from the background subtraction in the single-sided sample. For each MC model, f_D is varied until it matches the observed R_{SS} value in data. The data uncertainty is used to set the error in the constrained f_D for each model. An additional uncertainty in the ratio of single- to double-diffractive events is determined by taking the diffractive events to be entirely SD or to be evenly divided between SD and DD.

Using this method, the fitted f_D in the Pythia8 samples is between 25% and 31%, depending on the model (the default value is 28%). For the QGSJet-II (Epos LHC) model the fitted f_D is 35% (37%), and differs significantly from the default value of 21% (28%). The observed R_{SS}, with the MC predictions of its dependence on f_D, are shown in Figure 1. The adjusted f_D is used when determining the acceptance corrections ϵ_{sel} and $f_{\xi<10^{-6}}$.

![Figure 1: The ratio of the number of single-sided to inclusive events (R_{SS}) as a function of the fraction of the cross section that is diffractive according to each model (f_D). The default value of f_D in each generator is shown with a marker along each MC simulation line.](image)

The n_{MBTS} distributions in data are compared to the predictions from MC simulation in Figure 2 for both the inclusive and single-sided selections. The estimated background is subtracted from the measured distribution, and the trigger efficiency measured in data is applied to the simulated samples. The data distributions and MC simulation are peaked at high multiplicity values. In the single-sided case, $n_{MBTS} = 12$ corresponds to hits in all counters on one side of the detector. The data agree best with the DL models, particularly in the low-n_{MBTS} range. The MBR-based distribution provides a slightly worse description of the data. The Pythia8 sample using the SS model does not provide a good description of the data in the low-multiplicity region. Epos LHC and QGSJet-II also do not describe the data well, particularly in the single-sided hit multiplicity distribution. Therefore, the Pythia8 DL model with $\epsilon = 0.085$ is chosen as the nominal MC model for the ϵ_{sel} and $f_{\xi<10^{-6}}$ corrections, and only the DL and MBR models are considered for systematic uncertainties related to the MC corrections.

The efficiency of the event selection, ϵ_{sel}, depends upon the sensitivity of the MBTS counters. This
Figure 2: The background-subtracted distribution of the number of MBTS counters (n_{MBTS}) above a threshold of 0.15 pC in data and MC simulation for (top) the inclusive selection and (bottom) the single-sided selection. The ratio of the MC models to the data is also shown. The experimental uncertainty, including uncertainties in the MBTS counter efficiency, trigger efficiency, detector material and backgrounds, is shown as a shaded band around the data points. The models shown here use the f_D value determined from the R_{SS} measurement.
sensitivity is tested using isolated charged particles, reconstructed as ID tracks in the region $2.07 < |\eta| < 2.5$ where the coverages of the MBTS and ID overlap. Over the full coverage of the MBTS counters, the calorimeter is used to measure the counter efficiency with respect to particles that deposit sufficient energy in the calorimeter to seed a topological energy cluster [37]. Differences between the efficiencies in data and MC simulation are accounted for by adjusting the MBTS charge threshold in MC simulation until the simulated efficiencies match those observed in the data. The residual uncertainty in the counter efficiency after these corrections is determined to be ±0.5% for the outer and ±1.0% for the inner counters. Additionally, an uncertainty arises from the knowledge of the material in front of the MBTS detector. It is estimated using additional MC samples with an increased amount of material in front of the MBTS. Based on the MC samples, the uncertainty in the efficiency measurement due to modeling of hadronization and the underlying event is estimated to be negligible.

After having adjusted the counter charge threshold, ϵ_{sel} is determined from the nominal Pythia8 DL MC, using the fitted f_D corresponding to this model, to be 99.34% with a statistical uncertainty of ±0.03%. The uncertainty in the efficiencies of the MBTS counters results in only a ±0.1% uncertainty in the overall event selection efficiency, because many counters are hit in typical events. In addition, an uncertainty of ±0.2% in ϵ_{sel} arises from the knowledge of the material in front of the MBTS.

The fraction of events passing the inclusive selection that have $\xi < 10^{-6}$ represents an additional background component in the fiducial cross-section measurement. It is determined using the same Pythia8 DL MC to be $f_{\xi<10^{-6}} = (1.37 ± 0.05)\%$, where the uncertainty is statistical.

Because the efficiency and migration corrections are correlated, they are combined in a single correction factor, $C_{\text{MC}} = (1 - f_{\xi<10^{-6}})/\epsilon_{\text{sel}}$, for which systematic uncertainties are assessed. The systematic uncertainties include the variations of the counter efficiencies, the impact of the material uncertainty, the uncertainty in the fitted value of f_D, and the variation in C_{MC} found by comparing the Pythia8 DL and MBR models. Of these sources of uncertainty, the last is most important at ±0.5%. The value of C_{MC} used is (99.3 ± 0.5)%. The uncertainty also implicitly contains an uncertainty due to the CD contribution, since this is included in some of the models but not in others.

The uncertainty in the integrated luminosity is ±1.9%. It is derived, following a methodology similar to that detailed in Refs. [38, 39], from a calibration of the luminosity scale using x–y beam-separation scans performed in August 2015.

The individual components necessary for the fiducial cross-section calculation [Eq. (1)] are shown in Table 1 with their systematic uncertainties. The statistical uncertainties are negligible. The measured fiducial cross section is determined to be

$$\sigma_{\text{fid}}^{\text{inel}} = 68.2 ± 0.8 \, (\text{exp.}) ± 1.3 \, (\text{lum.}) \, \text{mb},$$

where the first uncertainty refers to all experimental uncertainties apart from the luminosity and the second refers to the luminosity only.

The Pythia8 DL model predicts values of 71.0 mb, 69.1 mb and 68.1 mb for $\epsilon = 0.06$, 0.085 and 0.10 respectively, and is compatible with the measurement for all these values of ϵ. The Pythia8 MBR model predicts 70.1 mb, also in agreement with the measurement. The Eros LHC (71.2 mb) and QGSJet-II (72.7 mb) predictions exceed the data by 2–3σ. The Pythia8 SS model predicts 74.4 mb, and thus exceeds the measured value by $\sim 4\sigma$.
Table 1: Values used for the calculation of the measured cross section, along with their systematic uncertainties.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Rel. uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events passing the inclusive selection ((N))</td>
<td>4159074</td>
<td>–</td>
</tr>
<tr>
<td>Number of background events ((N_{BG}))</td>
<td>51187</td>
<td>±50%</td>
</tr>
<tr>
<td>Integrated luminosity ([\mu b^{-1}] (L))</td>
<td>60.1</td>
<td>±1.9%</td>
</tr>
<tr>
<td>Trigger efficiency ((\epsilon_{\text{trig}}))</td>
<td>99.7%</td>
<td>±0.3%</td>
</tr>
<tr>
<td>MC correction factor ((C_{MC}))</td>
<td>99.3%</td>
<td>±0.5%</td>
</tr>
</tbody>
</table>

The extrapolation to \(\sigma_{\text{inel}}\) uses constraints from previous ATLAS measurements to minimize the model dependence of the component that falls outside the fiducial region. That is, \(\sigma_{\text{inel}}\) can be written as

\[
\sigma_{\text{inel}} = \sigma_{\text{inel}}^{\text{fid}} + \sigma_{\text{7 TeV}}^{\text{MC}}(\xi < 5 \times 10^{-6}) \times \frac{\sigma_{\text{MC}}^{\text{MC}}(\xi < 10^{-6})}{\sigma_{\text{7 TeV}, \text{MC}}^{\text{MC}}(\xi < 5 \times 10^{-6})},
\]

where \(\sigma_{\text{MC}}^{\text{MC}}(\xi < 10^{-6})\) is the MC-predicted cross section outside the fiducial range at 13 TeV and \(\sigma_{\text{7 TeV}, \text{MC}}^{\text{MC}}(\xi < 5 \times 10^{-6})\) is the MC predicted cross section outside the fiducial range of the 7 TeV measurement. The term \(\sigma_{\text{7 TeV}}^{\text{MC}}(\xi < 5 \times 10^{-6}) = \sigma_{\text{7 TeV}}^{\text{MC}}(\xi > 5 \times 10^{-6}) = 11.0 \pm 2.3\) mb is the difference between \(\sigma_{\text{inel}}\) measured at 7 TeV using the ALFA detector [9], \(\sigma_{\text{7 TeV}}^{\text{MC}}\), and \(\sigma_{\text{inel}}\) measured at 7 TeV for \(\xi > 5 \times 10^{-6}\) using the MBTS [7]. The uncertainties of the two measurements are uncorrelated.

The Pythia8 DL and Pythia8 MBR MC samples are used to assess the systematic uncertainty in the MC-derived ratio of cross sections in Eq. (2), which is determined to be 1.015 ± 0.081. These models also agree with the measurement of \(\sigma_{\text{7 TeV}}^{\text{MC}}(\xi < 5 \times 10^{-6})\) to within 2\(\sigma\).

The measured value for \(\sigma_{\text{inel}}\) is

\[
\sigma_{\text{inel}} = 79.3 \pm 0.8 \text{ (exp.)} \pm 1.3 \text{ (lum.)} \pm 2.5 \text{ (extrap.)} \text{ mb}.
\]

This measurement and other inelastic cross-section measurements are compared to several Monte Carlo models in Figure 3. Additional predictions range between 76.6 and 81.6 mb [40–44]. Compared to the measurement with the ALFA detector at \(\sqrt{s} = 7\text{ TeV}\) the cross section is higher by (11 ± 4)%.

In summary, a measurement of the inelastic cross section in 60 \(\mu b^{-1}\) of proton-proton collision data at \(\sqrt{s} = 13\text{ TeV}\) collected with the ATLAS detector at the LHC is presented. The measurement is performed in a fiducial region \(\xi > 10^{-6}\), and the result is extrapolated to the inelastic cross section using measurements at \(\sqrt{s} = 7\text{ TeV}\). The measured cross section agrees well with a variety of theoretical predictions and is consistent with the inelastic cross section increasing with center-of-mass energy, as observed at lower energies.
Figure 3: The inelastic proton-proton cross section versus \sqrt{s}. Measurements from other hadron collider experiments [6, 8, 10, 13, 14] and the Pierre Auger experiment [15] are also shown. Some of the LHC data points have been slightly shifted in the horizontal position for display purposes. The data are compared to the Pythia 8, EPOS LHC and QGSJet-II MC generator predictions. The uncertainty in the ATLAS ALFA measurement is smaller than the size of the marker.

Acknowledgements

We acknowledge and thank the LHCf Collaboration for the use of their triggers to check the MBTS trigger efficiency for this analysis.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSICT, Belarus; CNPq and FAPESP, Brazil; NSECR, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COFECUB, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DAM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MINE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE,
CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

The ATLAS Collaboration

4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin TX, United States of America
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey, Turkey
21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
22 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
23 Physikalisches Institut, University of Bonn, Bonn, Germany
24 Department of Physics, Boston University, Boston MA, United States of America
25 Department of Physics, Brandeis University, Waltham MA, United States of America
26 (a) Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
27 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
28 (a) Transilvania University of Brasov, Brasov, Romania; (b) National Institute of Physics and Nuclear Engineering, Bucharest; (c) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (d) University Politehnica Bucharest, Bucharest; (e) West University in Timisoara, Timisoara, Romania
29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
30 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
31 Department of Physics, Carleton University, Ottawa ON, Canada
32 CERN, Geneva, Switzerland
33 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
34 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
35 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics,
Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (also affiliated with PKU-CHEP); (f) Physics Department, Tsinghua University, Beijing 100084, China

36 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

37 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark

39 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy

40 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

41 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

42 Physics Department, Southern Methodist University, Dallas TX, United States of America

43 Physics Department, University of Texas at Dallas, Richardson TX, United States of America

44 DESY, Hamburg and Zeuthen, Germany

45 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

46 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

47 Department of Physics, Duke University, Durham NC, United States of America

48 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

49 INFN Laboratori Nazionali di Frascati, Frascati, Italy

50 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

51 Section de Physique, Université de Genève, Geneva, Switzerland

52 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

53 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

54 Il Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

55 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

56 Il Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

57 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

58 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

59 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

60 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

61 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

62 Department of Physics, Indiana University, Bloomington IN, United States of America

63 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

64 University of Iowa, Iowa City IA, United States of America

65 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

66 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

67 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

68 Graduate School of Science, Kobe University, Kobe, Japan
Faculty of Science, Kyoto University, Kyoto, Japan
Kyoto University of Education, Kyoto, Japan
Department of Physics, Kyushu University, Fukuoka, Japan
Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
Physics Department, Lancaster University, Lancaster, United Kingdom
(a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
Department of Physics, Royal Holloway University of London, Surrey, United Kingdom
Department of Physics and Astronomy, University College London, London, United Kingdom
Louisiana Tech University, Ruston LA, United States of America
Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
Physik institutionen, Lunds universitet, Lund, Sweden
Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
Institut für Physik, Universität Mainz, Mainz, Germany
School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Department of Physics, University of Massachusetts, Amherst MA, United States of America
Department of Physics, McGill University, Montreal QC, Canada
School of Physics, University of Melbourne, Victoria, Australia
Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Department of Physics and Astronomy, Michigan State University, East Lansing MI, United States of America
(a) INFN Sezione di Milano; (b) Dipartimento di Fisica, Università di Milano, Milano, Italy
B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
Group of Particle Physics, University of Montreal, Montreal QC, Canada
P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia
National Research Nuclear University MEPhI, Moscow, Russia
D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
Nagasaki Institute of Applied Science, Nagasaki, Japan
Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
(a) INFN Sezione di Napoli; (b) Dipartimento di Fisica, Università di Napoli, Napoli, Italy
Department of Physics and Astronomy, University of New Mexico, Albuquerque NM, United States of America
Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam,
Netherlands
108 Department of Physics, Northern Illinois University, DeKalb IL, United States of America
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York NY, United States of America
111 Ohio State University, Columbus OH, United States of America
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman OK, United States of America
114 Department of Physics, Oklahoma State University, Stillwater OK, United States of America
115 Palacký University, RCPTM, Olomouc, Czech Republic
116 Center for High Energy Physics, University of Oregon, Eugene OR, United States of America
117 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
118 Graduate School of Science, Osaka University, Osaka, Japan
119 Department of Physics, University of Oslo, Oslo, Norway
120 Department of Physics, Oxford University, Oxford, United Kingdom
121 (a) INFN Sezione di Pavia; (b) Dipartimento di Fisica, Università di Pavia, Pavia, Italy
122 Department of Physics, University of Pennsylvania, Philadelphia PA, United States of America
123 National Research Centre "Kurchatov Institute" B.P.Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia
124 (a) INFN Sezione di Pisa; (b) Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
125 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh PA, United States of America
126 (a) Laboratório de Instrumentação e Física Experimental de Partículas - LIP, Lisboa; (b) Faculdade de Ciências, Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de Física Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f) Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Prague, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
130 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
133 (a) INFN Sezione di Roma Tor Vergata; (b) Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
134 (a) INFN Sezione di Roma Tre; (b) Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
135 (a) Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies - Université Hassan II, Casablanca; (b) Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat; (c) Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V, Rabat, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138 Department of Physics, University of Washington, Seattle WA, United States of America
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinshu University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby BC, Canada
143 SLAC National Accelerator Laboratory, Stanford CA, United States of America
144 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto ON, Canada
159 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160 Graduate School of Science and Engineering, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
162 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
163 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
164 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
165 Department of Physics, University of Illinois, Urbana IL, United States of America
166 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atomica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
167 Department of Physics, University of British Columbia, Vancouver BC, Canada
168 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
169 Department of Physics, University of Warwick, Coventry, United Kingdom
170 Waseda University, Tokyo, Japan
171 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison WI, United States of America
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven CT, United States of America
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France
Also at Department of Physics, King’s College London, London, United Kingdom
Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
Also at Novosibirsk State University, Novosibirsk, Russia
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics & Astronomy, University of Louisville, Louisville, KY, United States of America
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain
Also at Departamento de Física e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
Also at Tomsk State University, Tomsk, Russia
Also at Universita di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at National Institute of Physics and Nuclear Engineering, Bucharest, Romania
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
Also at Graduate School of Science, Osaka University, Osaka, Japan
Also at Department of Physics, National Tsing Hua University, Taiwan
Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
Also at Department of Physics, The University of Texas at Austin, Austin TX, United States of America
Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
Also at CERN, Geneva, Switzerland
Also at Georgian Technical University (GTU), Tbilisi, Georgia
Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
Also at Manhattan College, New York NY, United States of America
Also at Hellenic Open University, Patras, Greece
Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at School of Physics, Shandong University, Shandong, China
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Eotvos Lorand University, Budapest, Hungary
Also at Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
Also at International School for Advanced Studies (SISSA), Trieste, Italy
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
States of America

ak Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China

ai Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria

am Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia

an Also at Institute of Physics, Academia Sinica, Taipei, Taiwan

ao Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

ap Also at Department of Physics, Stanford University, Stanford CA, United States of America

aq Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary

ar Also at Flensburg University of Applied Sciences, Flensburg, Germany

as Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

at Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

* Deceased