Recent results on b-baryon states and lifetimes

Steven Blusk
Syracuse University

On behalf of the LHCb collaboration
2011 + 2012 b-baryon results - a snapshot

- Pentaquarks ($\Lambda_b \rightarrow J/\psi pK$)
- Lifetimes
- New decays (charmless and charm+X and double-charm)
- Precision masses
- FCNC ($\Lambda_b \rightarrow \Lambda\phi, \Lambda\mu^+\mu^-$)
- CPV in $\Lambda_b \rightarrow p\phi^\pm$
- Excited Λ_b, Ξ_b resonances
- Absolute $B(\Lambda_b \rightarrow \Lambda_c\pi)$
- Fragmentation ratio: $f(\Lambda_b)/f_d$
- Angular analysis/studies of $\Lambda_b \rightarrow (\psi/\psi')\Lambda$
- Spectator b-quark decays
But, today’s menu, focus on recent results..

- Lifetime of the Ω_{b^-} baryon
- Evidence of the strangeness-changing decay $\Xi_{b^-} \rightarrow \Lambda_{b} \pi^-$
- Precision measurements of the Ξ_{b^*0} baryon

No new results on b-baryons from CMS or ATLAS... but stay tuned..
Introduction

- Systems with heavy quarks provide a unique laboratory to search for physics BSM.
- Because we measure decays of hadrons, we must also understand QCD, to the extent that it can alter BSM observables.
- A number of theoretical techniques used to quantify such effects:
 - Lattice QCD
 - HQET
 - Potential models
 - ...
- Measurements of the properties of these heavy quark systems provides valuable tests / input to theory.
 - Different helicity structure than mesons, so provide complementary information.
- Experimentally: b-baryons produced copiously at the LHC.
b-baryons

- For $m_b \gg m_q$, baryonic properties differentiated by dynamics of diquark system in color-field of static b-quark
- ‘Ground state’ baryons ($L = 0$), have $j^p = 0^+, 1^+ \rightarrow J^p = \frac{1}{2}^+, \frac{3}{2}^+$.

$J^p = \frac{1}{2}^+$

$J^p = \frac{1}{2}^+$

$J^p = \frac{3}{2}^+$

Study of the properties of beauty baryons provide important tests of HQET, potential models, etc..
Additional motivations...

- Quark pairs with $\psi_{\text{color}} \psi_{\text{flavor}}$ and ψ_{spin} anti-symmetric exhibit a “strong” attractive force within QCD through 1-gluon exchange.
 (e.g. $J^P=0^+$ are “good” scalar diquarks, see Jaffe hep-ph/0409065)

- The idea of such ‘di-quarks’ have been invoked & successfully used in the past to understand baryon production rates (e.g. Λ vs Σ), as well as to explain existence of exotic hadrons (which were later debunked).

- With the emergence of many new (and experimentally robust) candidate tetra- and penta-quark states in the last decade, their understanding has led to a renewed interest in the notion of diquarks.

- Since diquarks are an antitriplet 3 of SU(3)$_C$, formation of tetraquarks, pentaquarks and dibaryons is quite natural (see talk by Jibo He on Thursday for experimental review on tetra & pentaquarks).
Lifetimes of \(b \) hadrons

- The HQE is a powerful theoretical tool to understand decay rates of heavy quark systems
 - Predictions for \(\Gamma_{sl}(X_b \to X\ell\nu) \) can be used to determine CKM matrix elements, \(V_{cb} \) and \(V_{ub} \).
 - Lifetimes, e.g. \(1/\Gamma_{\text{tot}} \), provide a stringent test of the theory.
 - \(\Gamma_{\text{tot}} \sim m_b^5 \Rightarrow \) use lifetime ratios to reduce theory uncertainty.

- From HQET, expect:

 \[
 \left[\tau(B^0) \approx \tau(B_S) \right] < \tau(B^-), \quad \left[\tau(\Lambda_b^0) \approx \tau(\Xi_b^0) \right] < \left[\tau(\Xi_b^-) \approx \tau(\Omega_b^-) \right]
 \]

- Largest differences arise due to
 - Weak annihilation/exchange and/or
 - Pauli interference at \(O(1/m_b^3) \)
Lifetimes of b hadrons

- The HQE is a powerful theoretical tool to understand decay rates of heavy quark systems
 - Predictions for $\Gamma_{sl}(X_b \to X\ell\nu)$ can be used to determine CKM matrix elements, V_{cb} and V_{ub}.
 - Lifetimes, e.g. $1/\Gamma_{tot}$, provide a stringent test of the theory.
 - $\Gamma_{tot} \sim m_b^5 \rightarrow$ use lifetime ratios to reduce theory uncertainty.

- From HQET, expect:
 - Largest differences arise due to Weak annihilation/exchange and/or Pauli interference at $O(1/m_b^3)$

- Longstanding issue with $\tau(\Lambda_b)/\tau(B^0)$
 - Recently resolved, ratio much closer to unity, as expected.
Beyond Λ_b ..

- In 2014, LHCb made the most precise measurements of the Ξ_b lifetimes

$$\tau(\Xi_b^0) / \tau(\Lambda_b^0) = 1.006 \pm 0.018 \pm 0.010 \quad [\text{PRL113, 032001 (2014). Only } \tau(\Xi_b^0) \text{ moment}]$$

$$\tau(\Xi_b^-) / \tau(\Lambda_b^0) = 1.089 \pm 0.026 \pm 0.011 \quad [\text{PRL113, 242002 (2014)}]$$

- First statistically meaningful test of expected hierarchy from HQET.

$$\left[\tau(\Lambda_b^0) \approx \tau(\Xi_b^0) \right] < \left[\tau(\Xi_b^-) \approx \tau(\Omega_b^-) \right]$$

- What about Ω_b^-?
 - Also, produced copiously at LHC, but lower production rate than Λ_b by (roughly) two orders of magnitude.
 - Workhorse has been $\Omega_b \rightarrow J/\psi \Omega^-$, $\Omega^- \rightarrow \Lambda K^-$. Narrow resonances in final state, so PID not critical. However, two long-lived hyperons \rightarrow lower acceptance

$$\tau(\Omega_b^-) = 1.66^{+0.53}_{-0.40} \pm 0.02 \quad [\text{CDF, PRD 89, 072014 (2014), 22 signal ev.}]$$

$$\tau(\Omega_b^-) = 1.54^{+0.26}_{-0.21} \pm 0.05 \quad [\text{LHCb, PLB 736, 154 (2014), 60 signal ev}]$$

- These data are not of sufficient precision to test the HQET expectation.
Measurement of the Ω_b^- lifetime
LHCb, Phys. Rev. D93 092007 (2016)

Idea: Try to find & exploit a decay mode with no hyperons.

• Search for mode: $\Omega_b^- \to \Omega_c^0 \pi^-$, $\Omega_c^0 \to pK^-\pi^+$.
• This decay chain is yet to be observed.
• Ω_b^- decay is CF, Ω_c^0 decay is CS.
• Excellent normalization mode: $\Xi_b^- \to \Xi_c^0 \pi^-$, $\Xi_c^0 \to pK^-\pi^+$, to make a relative lifetime measurement.
• Also get a **mass measurement** for free.
• Many systematics cancel, as modes are almost identical in all respects.

• **Reason for optimism going in...**

 • $\sim 3600 \, \Xi_b^0 \to \Xi_c^+ \pi^-$, $\Xi_c^+ \to pK^-\pi^+$ signal decays
 (Ξ_c^+ mode also CS)

 • Assume $f(\Omega_b)/f(\Xi_b) \sim 0.1$, factor of 0.5 for reco extra track
 \to might see ~ 180 such Ω_b decays.

 • This would be 3X larger yield than
 $\Omega_b \to J/\psi \Omega^-$, $\Omega^- \to \Lambda K^-$ from LHCb (same L_{int})
What do we find...

\[\Omega_b^- \rightarrow \Omega_c^0 \pi^- \]

\[63 \pm 9 \]

\[\Xi_b^- \rightarrow \Xi_c^0 \pi^- \]

\[1384 \pm 39 \]

Signal yield about the same as \(\Omega_b \rightarrow J/\psi \Omega^- \)

\[\Omega_c^0 \] candidates

\[\Xi_c^0 \] candidates
Bin data into four time bins to get the yields

Correct yields by relative efficiency from simulation

$$\frac{N_{\Omega_b^- \to \Omega_c^0 \pi^- (t)}}{N_{\Xi_b^- \to \Xi_c^0 \pi^- (t)}} = A \exp(\kappa t), \quad \kappa \equiv 1/\tau_{\Xi_b^-} - 1/\tau_{\Omega_b^-}.$$
Data fit to exponential function gives κ.

Use measured Ξ_b^- lifetime, now precise enough, to get $\tau(\Omega_b^-)$.

This measurement

$\tau(\Omega_b^-)/\tau(\Xi_b^-) = 1.11 \pm 0.16 \pm 0.03$
$\tau(\Omega_b^-) = 1.78 \pm 0.26 \pm 0.05 \pm 0.06 \text{ ps}$

Consistent with previous m'ments, and as good sensitivity as $\Omega_b \rightarrow J/\psi \Omega^-$

Promising mode for further reduction of uncertainty.

Other measurements

$\tau(\Omega_b^-) = 1.66^{+0.53}_{-0.40} \pm 0.02$ [CDF14]
$\tau(\Omega_b^-) = 1.54^{+0.26}_{-0.21} \pm 0.05$ [LHCb14]

Systematic uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>δm (MeV/c^2)</th>
<th>$\tau_{\Omega_b^-}/\tau_{\Xi_b^-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal shape</td>
<td>± 0.3</td>
<td>± 0.005</td>
</tr>
<tr>
<td>Background shape</td>
<td>± 0.1</td>
<td>± 0.009</td>
</tr>
<tr>
<td>Ω_b^- shape</td>
<td>± 0.1</td>
<td>± 0.003</td>
</tr>
<tr>
<td>$X_b \rightarrow X_c K^-$ background</td>
<td>± 0.2</td>
<td>± 0.002</td>
</tr>
<tr>
<td>Relative efficiency</td>
<td>-3</td>
<td>± 0.018</td>
</tr>
<tr>
<td>Average time in bin</td>
<td>-3</td>
<td>± 0.002</td>
</tr>
<tr>
<td>Lifetime fit</td>
<td>-3</td>
<td>$\pm 0.016 \pm 0.008$</td>
</tr>
<tr>
<td>Simulated sample size</td>
<td>-3</td>
<td>± 0.017</td>
</tr>
<tr>
<td>Momentum scale</td>
<td>± 0.1</td>
<td>± 0.004</td>
</tr>
<tr>
<td>Ξ_b^- lifetime</td>
<td>-3</td>
<td>± 0.004</td>
</tr>
<tr>
<td>Total systematic</td>
<td>-0.4 ± 0.5</td>
<td>$\pm 0.016 \pm 0.029$</td>
</tr>
<tr>
<td>Total statistical</td>
<td>± 3.2</td>
<td>± 0.16</td>
</tr>
</tbody>
</table>

This measurement

$m(\Omega_b^-) - m(\Xi_b^-) = 247.4 \pm 3.2 \pm 0.5 \text{ MeV}$

$m(\Omega_b^-) = 6045.1 \pm 3.2 \pm 0.5 \pm 0.6 \text{ MeV}$

Consistent with previous CDF, LHCb; inconsistent with D0.

Better per-event mass resolution in $\Omega_b \rightarrow J/\psi \Omega^-$ due to low Q value.
Evidence of the strangeness-changing decay: $\Xi_b^- \rightarrow \Lambda_b \pi^-$

LHCb, PRL115, 241801 (2015)

- In the quark model, the Ξ_b^- decay is dominated by the decay width of the b quark.

- However, a small $O(1\%)$-ish contribution of the Ξ_b^- decay width, should arise from the decay $\Xi_b^- \rightarrow \Lambda_b \pi^-$.

- It was argued by Li, Voloshin (PRD90, 033016, 2014), that, theoretically, with a scalar (ds) diquark transition, the partial width could approach a level of 2-8% of the total width.
 - Such a large contribution could not be ignored in comparing measured Ξ_b lifetimes with HQET!

- Such a (large) signal would be easily discernable from the background.
 - Narrow peak at $\delta m = m(\Xi_b^-) - m(\Lambda_b) - m(\pi^-) = 38.8\pm0.5$ MeV ... No LEE!
 - Two successive weak b-hadron decays, each with $\tau \sim 1.5$ ps $\rightarrow \Lambda_b$ decay is further from pp interaction vertex.
Search strategy

• Two samples
 • Inclusive $\Lambda_b \rightarrow \Lambda_c^+\pi^-$ sample.
 • $X \rightarrow \Lambda_b\pi^-$ sample (with $\Lambda_b \rightarrow \Lambda_c^+\pi^-$)

• Backgrounds (to $\Xi_b^- \rightarrow \Lambda_b\pi^-$)
 • Combinatorial: because of the low Q-value, the Λ_b and π^- are almost collinear.

• Only mild discrimination of prompt π^- background. Use $\Lambda_b\pi^+$ combinations (WS) to help constrain this BG.

• $\Sigma_b^{(*)}\pi^\pm \rightarrow \Lambda_b\pi^\pm$: Broad peaks, include in full fit model to data using RBW x Gauss.

• BDT to provide discrimination between $\Xi_b^- \rightarrow \Lambda_b\pi^-$ and Λ_b+random π^-.
 • Separate sample into a low S/B and a high S/B region (according to BDT output).
 • Perform simultaneous fit to 4 samples: RS & WS, low S/B and hi S/B.

• All selection requirements chosen/optimized prior to looking in the signal region.

N($\Lambda_b \rightarrow \Lambda_c^+\pi^-$) = 265,000
What is found...

Excess of events at the expected location in the high S/B RS bin.

LHCb, PRL 115, 241801 (2015)
Results

- The BF is related to the measured yields

\[\frac{1}{\varepsilon_{rel}} \frac{N(\Xi^- \to \Lambda_b^0\pi^-)}{N(\Lambda_b^0)} = \frac{f_{\Xi^-_b}}{f_{\Lambda_b^0}} \cdot B(\Xi^- \to \Lambda_b^0\pi^-) \]

From simulation, we find: \(\varepsilon_{rel} = 1.47 \pm 0.03 \), mostly due to reconstructing the extra pion.

\[\frac{f_{\Xi^-_b}}{f_{\Lambda_b^0}} \cdot B(\Xi^- \to \Lambda_b^0\pi^-) = (5.7 \pm 1.8^{+0.8}_{-0.9}) \times 10^{-4} \]

- \(f_{\Xi^-_b} / f_{\Lambda_b^0} \) is not known, but reasonable estimates would be in the range of 0.1 to 0.2. With this assumed range:

\[f_{\Xi^-_b} / f_{\Lambda_b^0} = 0.1: \quad B(\Xi^- \to \Lambda_b^0\pi^-) = (0.57 \pm 0.18^{+0.08}_{-0.09})\% \]

\[f_{\Xi^-_b} / f_{\Lambda_b^0} = 0.2: \quad B(\Xi^- \to \Lambda_b^0\pi^-) = (0.29 \pm 0.09^{+0.04}_{-0.05})\% \]

These data do not support the large enhancement that could arise, if the (us) system behaves as a diquark’ with enhanced correlations.
Resonances in the $\Xi_b\pi$ system

- In 2012, CMS reported 1st observation of a single (neutral) resonance in the $\Xi_b^-\pi^+$ mass spectrum, using $\Xi_b^-\to J/\psi\Xi^-$ decays.
 - Consistent with the $J^P = 3/2^+$ Ξ_b^*

- Reported mass and width

\[
\delta m = 14.84 \pm 0.74 \pm 0.28 \text{ MeV} \\
\Gamma = 2.1 \pm 1.7\text{(stat)} \text{ MeV} \text{ (consistent with 0)}
\]
Resonances in the $\Xi_b\pi$ system

- In 2012, CMS reported 1st observation of a single (neutral) resonance in the $\Xi_b^-\pi^+$ mass spectrum, using $\Xi_b^-\rightarrow J/\psi\Xi^-$ decays.
 - Consistent with the $J^P = 3/2^+$ $\Xi_b^{-}^*$
 - Reported mass and width

$$\delta m = 14.84 \pm 0.74 \pm 0.28 \text{ MeV}$$
$$\Gamma = 2.1 \pm 1.7 \text{(stat)} \text{ MeV} \quad \text{(consistent with 0)}$$

- In 2015, LHCb followed up with a search for narrow (charged) resonances in the $\Xi_b^0\pi^-$ mass spectrum, using $\Xi_b^0 \rightarrow \Xi_c^{±}\pi^-$, $\Xi_c^{±} \rightarrow pK^-\pi^+$.
 - Two states observed, consistent with the $\Xi_b^-^*$, $\Xi_b^*^-$

$$\delta m_1 = 3.653 \pm 0.018 \pm 0.006 \text{ MeV}, \quad \Gamma_1 < 0.08 \text{ MeV} \quad \text{at 95\% CL}$$
$$\delta m_2 = 23.96 \pm 0.12 \pm 0.06 \text{ MeV}, \quad \Gamma_2 = 1.65 \pm 0.31 \pm 0.10 \text{ MeV}$$

$$\frac{\sigma(pp \rightarrow \Xi_b^-X)B(\Xi_b^- \rightarrow \Xi_b^0\pi)}{\sigma(pp \rightarrow \Xi_b^0X)} = 0.118 \pm 0.017 \pm 0.007,$$
$$\frac{\sigma(pp \rightarrow \Xi_b^0X)B(\Xi_b^- \rightarrow \Xi_b^0\pi)}{\sigma(pp \rightarrow \Xi_b^0X)} = 0.207 \pm 0.032 \pm 0.015,$$
Precision measurements of the properties of Ξ_b^{*0} baryon
LHCb, JHEP 1605, 161 (2016)

Goals:
- See if another state was possibly missed by CMS?
- Make precise measurement of mass
- First measurement of the width
- Measure the production rate (relative to Ξ_b^-)

Techniques/selections similar to Ξ_b^{*0} analysis.
- Reconstruct $\Xi_b^- \rightarrow \Xi_c^0 \pi^-$, $\Xi_c^0 \rightarrow pK^-K^+\pi^+$
- Add a π^+ consistent with pp interaction point.
- Form $\delta m = m_{\text{inv}}(\Xi_b^-\pi^+) - m_{\text{inv}}(\Xi_b^-) - m(\pi^+)$

Signal (δm) resolution obtained from simulation.
Precision measurements of the properties of Ξ_b^{*0} baryon
LHCb, JHEP 1605, 161 (2016)

Goals:
- See if another state was possibly missed by CMS?
- Make precise measurement of mass
- First measurement of the width
- Measure the production rate (relative to Ξ_b^-)

Techniques/selections similar to Ξ_b^{*-} analysis.
- Reconstruct $\Xi_b^- \rightarrow \Xi_c^0 \pi^-$, $\Xi_c^0 \rightarrow pK^-K^-\pi^+$
- Add a π^+ consistent with pp interaction point.
- Form $\delta m = m_{\text{inv}}(\Xi_b^-\pi^+) - m_{\text{inv}}(\Xi_b) - m(\pi^+)$

Signal (\(\delta m\)) resolution obtained from simulation.
Precision measurements of the properties of Ξ_b^*0 baryon
LHCb, JHEP 1605, 161 (2016)

- State seen by CMS confirmed.
- No second peak ($\Xi_b'0$) above threshold.
 - Depending on mass, should decay as $\Xi_b'0 \to \Xi_b^0\pi^0$ and/or $\Xi_b'0 \to \Xi_b^0\gamma$.
 - (Both difficult for LHCb, due to very low energy of neutral).
 \[\delta m = 15.727 \pm 0.068 \pm 0.023 \text{ MeV} \]
 \[\Gamma = 0.90 \pm 0.16 \pm 0.08 \text{ MeV} \]
- Consistent with CMS; δm about 10X more precise (4X from stats, ~3X from per-event mass resolution)

- Production ratio:
 - Select subset of events that specifically pass the L0 hadron trigger.
 \[\frac{\sigma(pp \to \Xi_b^{*0}X)B(\Xi_b^{*0} \to \Xi_b^{0}\pi^+)}{\sigma(pp \to \Xi_b^{0}X)} = 0.27 \pm 0.03 \text{ (stat)} \pm 0.01 \text{ (syst)} \]
- Similar ratio as for Ξ_b^*/Ξ_b^0
- Excited Ξ_b states produced at a similar rate to direct production of the ground state baryons.
Summary and outlook

• LHC is a **beauty baryon factory**.
 - We’ve just ‘scratched the surface’ on beauty baryons.

• **Lifetimes:**
 - Λ_b: WA at 1% level, probably good enough for some time.
 - Ξ_b: currently σ/τ~3% ... should be able to achieve ~1%-level precision in next couple of years.
 - Ω_b: WA about 10% ... can be pushed down using modes presented here; possible explore $\Omega_b^- \rightarrow \Omega_c^0 \mu\nu$, $\Omega_c^0 \rightarrow \pi\bar{K}-\bar{K}+\pi$. Large stat gain (~10X) ... care needed with systematics (x-feed, form-factors, K-factors, etc).

• **Heavier baryons..**
 - Welcomed discoveries of $\Xi_b^{*,0}, \Xi_b^{'+}, \Xi_b^{*+}$
 - Many other states still to be discovered. Dipion transitions, modes with γ and π^0 should be searched for (e.g. $\Sigma_b^0, \Sigma_b^{*,0}, \Xi_b^{'+}, \Xi_b^{*+}$, higher Λ_b, Σ_b excitations, etc)
 - The Ξ_{bc} baryon is awaiting discovery. Many B_c’s, so we must have plenty of Ξ_{bc}. (many modes will need to be combined)

• Exotics: See talk by Jibo He.

• CPV in baryons: See talk by Rafael Silva Coutinho

• Upgrade should greatly extend our reach on all fronts ... see talk by Laura Gavardi

• **There is much yet to be learned in the baryon sector. Expect more interesting results at FPCP 2017 in Prague!**