Measurements of Exclusive Dilepton Production at 7 and 8 TeV with the ATLAS Detector

Othmane Rifki
University of Oklahoma

On behalf of the ATLAS Collaboration

Low-x Meeting 2016
June, 09 2016
Introduction

- Initial state photons are emitted from high energy proton beams
 - pp collision can be considered as a $\gamma\gamma$ collision
 - protons deflected at small angles
 - better known initial conditions and simpler final states

- Exclusive production of a final state X via the reaction $pp \rightarrow ppX$
 - Elastic: $pp \rightarrow pp(\gamma\gamma) \rightarrow pp\ell\ell$ where both protons remain intact
 - Single-dissociation: $pp \rightarrow pX'(\gamma\gamma) \rightarrow pX'\ell\ell$ where one proton dissociate
 - Double-dissociation: $pp \rightarrow X'X''(\gamma\gamma) \rightarrow X'X''\ell\ell$ where both protons dissociate

- Use **Equivalent Photon Approximation (EPA)** to calculate the pp cross section
 - Significant corrections needed due to hadronic interactions between elastic scattered protons
Exclusive $\gamma\gamma$ production computed in QED with small uncertainty
- Possible to use $pp(\gamma\gamma) \rightarrow pp\mu^+\mu^-$ for luminosity measurement at the LHC

Exclusive $\ell^+\ell^-$
- Standard candle for photon physics
- Non-negligible background to Drell-Yan (DY) reactions

Exclusive W^+W^-
- Test of SM quartic gauge couplings of $W^+W^-\gamma\gamma$
- Probe anomalous quartic gauge couplings (aQGCs)

Exclusive Higgs
- Low systematics due to the clean production environment
- Potentially used for Higgs properties studies
Experimental signatures

- **Exclusive:** Large rapidity gaps between protons and $\ell^+\ell^-/W^+W^-$/Higgs
 - Clean signature with back-to-back leptons and no other activity in the central detectors
 - Absence of tracks in detector near those from $\ell^+\ell^-/W^+W^-$/Higgs
- **Inclusive:** Extra particles from additional parton emission, ISR, FSR, etc
 - Presence of tracks from same vertex in detector
- **Pileup:** additional interactions coming from a different proton-proton collision
- **Underlying event:** additional interactions from the same proton collision
Simulation

- **Exclusive $\ell^+\ell^-$**
 - Elastic - **Signal**: Herwig++ (EPA)
 - Single dissociation: LPAIR (Brase and Suri-Yennie structure function)
 - Double dissociation: Pythia8 (NNPDF2.3QED PDF)

- **Exclusive W^+W^-**
 - Elastic - **Signal**: Herwig++ generator
 - $\gamma\gamma \rightarrow W^+W^-$ with aQGC: FPMC
 - Exclusive Higgs
 - $pp \rightarrow pggp \rightarrow pHp$: FPMC
 - No available generator that supports exclusive W^+W^- and Higgs when one or both of the initial protons dissociate
 - Necessary to estimate it using data-driven methods
Measurement of exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$ production at 7 TeV
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Event Selection

- **Physics Letters B 749 (2015)**
- **Data**: 4.6 fb$^{-1}$ at 7 TeV
- **Isolated** e^+e^- or $\mu^+\mu^-$ candidates

- Exactly 2 tracks ($p_T > 400$ MeV) associated with the dilepton vertex
- Distance between dilepton vertex and closest vertex: $\Delta z_{\text{vtx}}^{\text{iso}} > 3\,\text{mm}$ to reject DY

<table>
<thead>
<tr>
<th>Variable</th>
<th>Electron Channel</th>
<th>Muon Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^ℓ</td>
<td>> 12 GeV</td>
<td>> 10 GeV</td>
</tr>
<tr>
<td>$</td>
<td>\eta^\ell</td>
<td>$</td>
</tr>
<tr>
<td>$m_{\ell^+\ell^-}$</td>
<td>> 24 GeV</td>
<td>> 20 GeV</td>
</tr>
</tbody>
</table>

Di-electron vertex isolation distance [mm]

<table>
<thead>
<tr>
<th>Tracks associated with di-muon vertex</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Data / MC</td>
</tr>
<tr>
<td>3</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1.1</td>
</tr>
<tr>
<td>7</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>9</td>
<td>1.4</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Data / **MC**
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Event Selection

- Remove Z-region dominated by DY
- p_T of the dilepton system $p_T^{\ell\ell} < 1.5$ GeV: low virtuality of incoming photons

![Graph showing event selection criteria](image-url)
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Yields

- Observed 869/2124 while expected 1030/2630 in $e^+e^-/\mu^+\mu^-$ channels
- Number of selected events in data 20% lower than expectation
- due to proton absorptive corrections not included in MC
- Proton has a finite size, the impact parameter dependence is non-negligible [arXiv:1410.2983]

<table>
<thead>
<tr>
<th>Selection</th>
<th>Signal $\gamma\gamma \rightarrow \ell^+\ell^-$</th>
<th>S-diss. $Z/\gamma \rightarrow \ell^+\ell^-$</th>
<th>D-diss. $Z/\gamma \rightarrow \ell^+\ell^-$</th>
<th>Multi-jet $Z/\gamma \rightarrow \ell^+\ell^-$</th>
<th>Di-boson $Z/\gamma \rightarrow \ell^+\ell^-$</th>
<th>Total predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron channel ($\ell = e$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preselection</td>
<td>898</td>
<td>2096</td>
<td>2070</td>
<td>1460000</td>
<td>83000</td>
<td>3760</td>
<td>4610</td>
</tr>
<tr>
<td>Exclusivity veto</td>
<td>661</td>
<td>1480</td>
<td>470</td>
<td>3140</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Z region removed</td>
<td>569</td>
<td>1276</td>
<td>380</td>
<td>600</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>$p_T^{\ell^+\ell^-} < 1.5$ GeV</td>
<td>438</td>
<td>414</td>
<td>80</td>
<td>100</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Muon channel ($\ell = \mu$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preselection</td>
<td>1774</td>
<td>3964</td>
<td>4390</td>
<td>2300000</td>
<td>98000</td>
<td>7610</td>
<td>6710</td>
</tr>
<tr>
<td>Exclusivity veto</td>
<td>1313</td>
<td>2892</td>
<td>860</td>
<td>3960</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Z region removed</td>
<td>1215</td>
<td>2618</td>
<td>760</td>
<td>1160</td>
<td>3</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>$p_T^{\ell^+\ell^-} < 1.5$ GeV</td>
<td>1174</td>
<td>1085</td>
<td>160</td>
<td>210</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Signal extraction

- Binned maximum-likelihood fit of signal (exclusive) and background (single dissociation) to the measured dilepton acoplanarity distribution.
- DY and double dissociation fixed.
- Both exclusive and single dissociation requires scaling down:
 - $R_{\gamma\gamma \rightarrow e^+e^-}^{\text{excl.}} = 0.863 \pm 0.070$, $R_{\gamma\gamma \rightarrow e^+e^-}^{s-diss} = 0.759 \pm 0.080$
 - $R_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{excl.}} = 0.791 \pm 0.041$, $R_{\gamma\gamma \rightarrow \mu^+\mu^-}^{s-diss} = 0.762 \pm 0.049$
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Results

- Cross section extracted by measuring suppression factor $R^{\text{excl.}}_{\gamma\gamma \rightarrow \ell^+\ell^-}$ applied to prediction:

$$\sigma^{\text{excl.}}_{\gamma\gamma \rightarrow \ell^+\ell^-} = R^{\text{excl.}}_{\gamma\gamma \rightarrow \ell^+\ell^-} \times \sigma^{\text{pred.}}_{\gamma\gamma \rightarrow \ell^+\ell^-}$$

- The fiducial cross sections:
 - $\sigma^{\text{excl.}}_{\gamma\gamma \rightarrow e^+e^-} = 0.428 \pm 0.035 \text{ (stat.)} \pm 0.018 \text{ (syst.) pb}$
 - $\sigma^{\text{excl.}}_{\gamma\gamma \rightarrow \mu^+\mu^-} = 0.628 \pm 0.032 \text{ (stat.)} \pm 0.021 \text{ (syst.) pb}$

- The measurement is statistically limited:
 - Statistical = 8.2% for e^+e^- and 5.1% for $\mu^+\mu^-$
 - Systematic = 4.3% for e^+e^- and 3.3% for $\mu^+\mu^-$

- The theory predictions with absorptive corrections (20% effect):
 - $\sigma^{\text{EPA,corr.}}_{\gamma\gamma \rightarrow e^+e^-} = 0.398 \pm 0.007 \text{ pb}$
 - $\sigma^{\text{EPA,corr.}}_{\gamma\gamma \rightarrow \mu^+\mu^-} = 0.638 \pm 0.011 \text{ pb}$
Exclusive $\gamma\gamma \rightarrow W^+ W^-$ and Higgs production at 8 TeV
Exclusive $\gamma\gamma \to W^+W^-$ and Higgs: Event Selection

- Define dilepton vertex z_0^{av} as $e^\pm\mu^\mp$ average z_0 position
- Exclusivity selection: No additional tracks in $\Delta z_0^{iso} = |z_0^{track} - z_0^{av}| = \pm 1$ mm
- Optimal $\Delta z_0^{iso} = 1$ mm, $\epsilon = 58 \pm 6\%$
- Rest of the selection:

<table>
<thead>
<tr>
<th>Variable</th>
<th>7 TeV</th>
<th>8 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg. pileup</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Vertex Δz_0</td>
<td>$</td>
<td>z_0^{track} - z_0^{PV}</td>
</tr>
<tr>
<td>p_T^{lep} $m_{e\mu}$</td>
<td>> 25, 20 GeV</td>
<td>> 25, 15 GeV</td>
</tr>
<tr>
<td>p_T^{he} $m_{e\mu}$</td>
<td>> 20 GeV</td>
<td>> 10 GeV</td>
</tr>
<tr>
<td>Δz_0^{iso}</td>
<td>> 30 GeV</td>
<td>> 30 GeV</td>
</tr>
<tr>
<td>$p_T^{e\mu}$ (aQGC)</td>
<td>1mm 1mm</td>
<td>1mm 1mm</td>
</tr>
</tbody>
</table>

- Higgs selection has a lower p_T and mass because one W is offshell
- Additional selection in Higgs meant to reduce W^+W^-
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Higgs: Exclusivity validation

- Validated in a $\gamma\gamma \rightarrow \mu^+\mu^-$ selection
 - $f_{EL} = \text{ratio of observed elastic } \gamma\gamma \rightarrow \mu^+\mu^- \text{ to prediction}$
 - Extracted from template fits in acoplanarity $(1 - |\Delta\phi_{\mu\mu}|/\pi)$
 - Vary $p_T^{\mu\mu}$ and Δz_{iso}^0 to evaluate systematic uncert. (total 14%)
 - Systematic error due to pileup at the 10% level

$$f_{EL} = 0.76 \pm 0.04(\text{stat.}) \pm 0.10(\text{sys.})$$

Exclusive $\mu^+\mu^-$ at 8 TeV

Exclusive $\mu^+\mu^-$ at 7 TeV

pileup: extra track flat for exclusive

compatible with $R_{\gamma\gamma \rightarrow \mu^+\mu^-}^{\text{excl.}} = 0.791 \pm 0.041$

O. Rifki

Exclusive Dilepton Production

June, 09 2016

14 / 20
Exclusive production of W^+W^- and $\ell^+\ell^-$ are similar.

Since there is no simulation for SD and DD $\gamma\gamma \to W^+W^-$, a correction factor f_γ is extracted from data.

Same $\gamma\gamma \to \mu^+\mu^-$ selection is applied except for $m_{\mu\mu} > 160$ GeV and no $p_T^{\mu\mu}$ cut.

$$f_\gamma = \frac{N_{Data} - N_{POWHEG}^{Background}}{N_{HERWIG++}^{ELASTIC}} = 3.30 \pm 0.22{\text{(stat.)}} \pm 0.06{\text{(syst.)}}$$

Exclusive $\gamma\gamma \to W^+W^-$ estimate is scaled by f_γ.

The systematic uncertainty is obtained by varying DY contribution by 20%.

The total uncertainty is 7% dominated by the statistical uncertainty.
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Higgs: Track multiplicity

- Underlying event emits additional tracks from the lepton vertex
- Necessary to validate modeling of underlying event in simulation
- Extract scale factors $\frac{\epsilon_{\text{Data}}}{\epsilon_{\text{MC}}}$ from Z peak data region since it is DY dominated with no exclusive dileptons
- Same $\gamma\gamma \rightarrow \mu^+\mu^-$ selection with $80 \text{ GeV} < m_{\mu\mu} < 100 \text{ GeV}$ and no $p_T^{\mu\mu}$ cut

- Data/MC scale factors are stable within $\pm 20\%$ over a wide $m_{\mu\mu}$ range
- Scale factors are validated in a $Z \rightarrow \tau\tau$ control region with $N_{\text{trk}} = 1 - 4$ and an $e\mu$ selection
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Higgs: Inclusive $W^+W^- +$ Other

- Powheg+Pythia8 known to underestimate W^+W^- yields
 - Extract a scale factor from data
 - Use the Higgs selection (slide13) with $55 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV}$, $\Delta\phi_{\ell\ell} < 2.6$ and 0 jets
 - Uncertainties dominated by statistics (5%)

- Estimate inclusive $W^+W^- + (\text{DY, } W+\text{jets, } \text{Top})$ from data
- Used as a constraint in excl. Higgs and aQGC
- Use the excl. W^+W^- selection (slide13) with 1 to 4 extra tracks
- Estimate bracketed by
 - Upper bound: Data prediction - (Excl. + other VV)
 - Lower bound: Predicted W^+W^- from Powheg+Pythia8
- Extrapolate to the 0 track bin by: $N_{0}^{\text{Est.}} = N_{1-4}^{\text{Est.}} \times \frac{N_{\text{WW}}^{\text{Pred.}, 0}}{N_{\text{WW}}^{\text{Pred.}, 1-4}}$
Exclusive $\gamma\gamma \rightarrow W^+W^-$: Results

- Exclusive W^+W^- event yields: Data=23, Background = 8.3 ± 2.6, Signal = 9.3 ± 1.2
- Observed signal exceeds predicted signal by 50% leading to a measurement significance of 3σ
- aQGC event yields ($p_T^{e\mu} > 120$ GeV): Data=1, Background = 0.37 ± 0.13, SM Signal = 0.37 ± 0.04

O. Rifki
Exclusive Dilepton Production
June, 09 2016 18 / 20
Exclusive and inclusive W^+W^- are the dominant background

Use the result from exclusive W^+W^- to predict its contribution

Exclusive Higgs event yields: Data=6, Background = 3.0 ± 0.8, Signal = 0.023 ± 0.003

Observed and expected limits are in agreement

Upper limit $400 \times \sigma_{H}^{predicted}$ (which predicts just the elastic process)
Studies of exclusive dilepton production processes have been conducted by ATLAS.

Cross section of the exclusive $\gamma\gamma \to \ell^+\ell^-$ production has been measured.

Observation is consistent with the suppression (20%) expected due to proton absorption contributions.

No simulation available for SD and DD exclusive W^+W^- production requiring data driven estimates.

Track-based technique for selecting exclusive processes was developed and validated.

Evidence of SM exclusive W^+W^- production was found to be at the level of 3σ.

No evidence for an excess in the kinematic region targeting aQGC.

Limits on exclusive Higgs total production cross section set to $400 \times \sigma_H^{predicted}$

$\sigma_H^{predicted}$ for elastic process only.
Backup
Equivalent Photon Approximation (EPA)

- Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$
 \[
 \sigma_{pp(\gamma\gamma)\rightarrow \ell^+\ell^-}^{EPA} = \int \int P(x_1) P(x_2) \sigma_{\gamma\gamma \rightarrow \ell^+\ell^-} \left(m_{\ell^+\ell^-}^2 \right) \, dx_1 dx_2
 \]

- Exclusive $\gamma\gamma \rightarrow W^+W^-$
 \[
 \sigma_{pp(\gamma\gamma)\rightarrow W^+W^-}^{EPA} = \int \int P(x_1) P(x_2) \sigma_{\gamma\gamma \rightarrow W^+W^-} \left(m_{\gamma\gamma}^2 \right) \, dx_1 dx_2
 \]

- $P(x_1), P(x_2)$ are the equivalent photon spectra for the protons
- x_1 and x_2 are the fractions of the proton energy carried away by the emitted photons
- $m_{\ell^+\ell^-}$ is the invariant mass of the two leptons
- $m_{\gamma\gamma}$ is the two photons center-of-mass energy
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Control distributions

- Apply scaling factors to MC, use acoplanarity < 0.008 instead of $p_T^{\ell\ell} < 1.5$ GeV
- Good modeling of data seen in both channels
Exclusive $\gamma\gamma \to \ell^+\ell^-$: Breakdown of systematic uncertainties

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty [%] $\gamma\gamma \to e^+e^-$</th>
<th>Uncertainty [%] $\gamma\gamma \to \mu^+\mu^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron reconstruction and identification efficiency</td>
<td>1.9</td>
<td>-</td>
</tr>
<tr>
<td>Electron energy scale and resolution</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>Electron trigger efficiency</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td>Muon reconstruction efficiency</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Muon momentum scale and resolution</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>Muon trigger efficiency</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>2.3</td>
<td>2.0</td>
</tr>
<tr>
<td>Template shapes</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Pile-up description</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Vertex isolation efficiency</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>LHC beam effects</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>QED FSR in DY e^+e^-</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Total systematic uncertainty</td>
<td>4.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Data statistical uncertainty</td>
<td>8.2</td>
<td>5.1</td>
</tr>
</tbody>
</table>
Exclusive $\gamma\gamma \rightarrow \ell^+\ell^-$: Fit results

ATLAS

$\sqrt{s} = 7$ TeV, 4.6 fb$^{-1}$

$\gamma\gamma \rightarrow e^+e^-$
acoplanarity fit

- 68% C.L.
- 95% C.L.
- Theory

$\gamma\gamma \rightarrow \mu^+\mu^-$
acoplanarity fit

- 68% C.L.
- 95% C.L.
- Theory
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Higgs: $\gamma\gamma \rightarrow \mu^+\mu^-$ selection

- 2 μ with $p_T^{\mu} > 20$ GeV
- 45 GeV < $m_{\mu\mu}$ < 75 GeV or $m_{\mu\mu}$ > 105 GeV
- $p_T^{\mu\mu} < 3$ GeV and $\Delta z_0^{iso} = 1.0$ mm
Exclusive $\gamma\gamma \rightarrow W^+W^-$ and Higgs: pileup

- Effect of pileup on exclusivity selection must be quantified
- Evaluate a factor: $f = \frac{Data}{Elastic+SD+DD}$ in nominal exclusivity vs. pileup-prone exclusivity regions
- Nominal exclusivity:
 - Require acoplanarity < 0.0015 and $p_{\mu\mu}^T < 3$ GeV to enhance elastic events with $\Delta z_0^{iso} = 1$mm
 - $f = 0.73 \pm 0.03$ (stat.) ± 0.01 (syst.)
- Pileup-prone exclusivity:
 - Similar but ask for exactly one track in $\Delta z_0^{iso} = 3$mm expected to be from pileup
 - Extra track distribution in Δz_0^{iso} is flat for exclusive events
 - $f = 0.70 \pm 0.06$ (stat.) ± 0.03 (syst.)
- 2 scale factors compatible at 10%: assign a systematic error of 10%
Exclusive $\gamma\gamma \rightarrow W^+ W^-$ and Higgs: Selection

<table>
<thead>
<tr>
<th>Variable</th>
<th>Excl $W^+ W^-$</th>
<th>Excl Higgs</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^{lep}</td>
<td>$> 25, 20 \text{ GeV}$</td>
<td>$> 25, 15 \text{ GeV}$</td>
</tr>
<tr>
<td>$m_{e\mu}$</td>
<td>$> 20 \text{ GeV}$</td>
<td>$> 10 \text{ GeV}$</td>
</tr>
<tr>
<td>$p_T^{e\mu}$</td>
<td>$> 30 \text{ GeV}$</td>
<td>$> 30 \text{ GeV}$</td>
</tr>
<tr>
<td>Δz_0^{iso}</td>
<td>1mm</td>
<td>1mm</td>
</tr>
<tr>
<td>$p_T^{e\mu}$ (aQGC)</td>
<td>$> 120 \text{ GeV}$</td>
<td>-</td>
</tr>
<tr>
<td>$m_{e\mu}$</td>
<td>-</td>
<td>$< 55 \text{ GeV}$</td>
</tr>
<tr>
<td>$\Delta \phi_{e\mu}$</td>
<td>-</td>
<td>< 1.8</td>
</tr>
<tr>
<td>m_T</td>
<td>-</td>
<td>$< 140 \text{ GeV}$</td>
</tr>
</tbody>
</table>