The current world-average of the strong coupling at the Z pole mass, $\alpha_s(m_Z^2)$ = 0.1181 ± 0.0013, is obtained from a comparison of perturbative QCD calculations computed, at least, at next-to-next-to-leading-order accuracy, to a set of 6 groups of experimental observables: (i) lattice QCD “data”, (ii) τ hadronic decays, (iii) proton structure functions, (iv) event shapes and jet rates in e^+e^- collisions, (v) Z boson hadronic decays, and (vi) top-quark cross sections in p-p collisions. In addition, at least 8 other α_s extractions, usually with a lower level of theoretical and/or experimental accuracy today, have been proposed: pion, Υ, W hadronic decays; soft and hard fragmentation functions; jets cross sections in pp, e-p and γ-p collisions; and photon F_2 structure function in $\gamma\gamma$ collisions. These 14 α_s determinations are reviewed, and the perspectives of reduction of their present uncertainties are discussed.

1 Introduction

The strong coupling α_s, one of the fundamental parameters of the Standard Model, sets the scale of the strength of the strong interaction between quarks and gluons, theoretically described by Quantum Chromodynamics (QCD)\(^1\). Its current value at the reference Z pole mass amounts\(^2\) to $\alpha_s(m_Z^2) = 0.1186 \pm 0.0013$, with a $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 1\%$ uncertainty—orders of magnitude larger than that of the gravitational ($\delta G/G \approx 10^{-5}$), Fermi ($\delta G_F/G_F \approx 10^{-8}$), and QED ($\delta \alpha/\alpha \approx 10^{-10}$) couplings, making of α_s the least precisely known of all fundamental constants in nature. Improving our knowledge of α_s is a prerequisite to reduce the theoretical uncertainties in the calculations of all high-precision perturbative QCD (pQCD) observables whose cross sections or decay rates depend on higher-order powers of α_s, as is the case for virtually all those accessible at the LHC. Chiefly, in the Higgs sector, the α_s uncertainty is currently the second major contributor (after the bottom mass) to the parametric uncertainties of its dominant $H \rightarrow bb$ partial decay, and it’s the leading one for the $H \rightarrow gg, c\bar{c}$ branching fractions. The α_s running impacts also our understanding of physics approaching the Planck scale, e.g. the stability of the electroweak vacuum\(^3\) or the scale at which the interaction couplings unify.

The latest update of the Particle-Data-Group (PDG) world-average $\alpha_s(m_Z^2)$, obtained from a comparison of next-to-next-to-leading-order (NNLO) pQCD calculations to a set of 6 groups of experimental observables, has resulted in a factor of two increase in the α_s uncertainty, compared to the previous (2014) PDG value\(^2\). This fact calls for new independent approaches to determine α_s from the data, with experimental and theoretical uncertainties different from those of the methods currently used, in order to reduce the overall uncertainty of the α_s world-average. These proceedings provide a summary of all the α_s determination methods described in detail in refs.\(^1,2\) where more complete lists of references can be found.

2 Current world $\alpha_s(m_Z^2)$ average

The six methods used in the latest global $\alpha_s(m_Z^2)$ extraction are shown in Fig. 1 (left, and top-right) roughly listed by increasing energy scale\(^2\):
1. The comparison of NNLO pQCD predictions to computational lattice QCD “data” (Wilson loops, quark potentials, vacuum polarization,...) yields $\alpha_s(m_Z^2) = 0.1187 \pm 0.0012$, and provides the most precise α_s extraction today. Its $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) = 1\%$ uncertainty (dominated by finite lattice spacing and statistics) has, however, doubled since the previous PDG pre-average due to a new calculation of the QCD static energy \(^4\) which is lower than the rest of lattice-QCD analyses. The expected improvements in computing power over the next 10 years would reduce the α_s uncertainty down to 0.3%. Further reduction to the $\sim0.1\%$ level requires the computation of 4th-order pQCD corrections.

2. The ratio of hadronic to leptonic τ decays, known experimentally to within $\pm2.3\%$ ($R_{\tau,\exp} = 3.4697 \pm 0.0080$), compared to pQCD at next-to-NNLO (N3LO) accuracy, yields $\alpha_s(m_Z^2) = 0.1192 \pm 0.0018$, i.e. $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) = 1.5\%$. This uncertainty has slightly increased (from $\pm1.3\%$) compared to the previous PDG revision to cover the different results obtained by various pQCD approaches (FOPT vs. CIPT, with different treatments of non-pQCD corrections)\(^5\). High-statistics τ spectral functions (e.g. from B-factories, or ILC/FCC-ee in the future) and solving CIPT-FOPT discrepancies (and/or N4LO calculations, within a ~10 years time scale) are needed to bring α_s uncertainties below $\sim1\%$.

3. The QCD coupling has been obtained from various analyses of proton structure functions (including N3LO fits of $F_2(x, Q^2)$, $F_3(x, Q^2)$, $F_L(x, Q^2)$, as well as global (approximately) NNLO fits of PDFs) yielding a central value lower than the rest of methods: $\alpha_s(m_Z^2) = 0.1156 \pm 0.0023$, with a moderate precision $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) = 2\%$ (slightly increased from the previous $\pm1.7\%$, driven by the spread of different theoretical extractions). Resolving the differences among fits, and/or full-NNLO global fits of DIS+hadronic data (including consistent treatment of heavy-quark masses) would yield an α_s extraction with $\sim1\%$ uncertainty. Ultimate uncertainties in the $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 0.15\%$ range require large-statistics studies at a future DIS machine (such as LHeC or FCC-ee)\(^6\).

4. Combining the LEP data on e^+e^- event shapes and rates (thrust, C-parameter, N-jet cross sections) with N3LO-LQCD computations (matched, in some cases, with soft and collinear resummations at N$^{(2)}$LL accuracy), one obtains $\alpha_s(m_Z^2) = 0.1169 \pm 0.0034$. The $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) = 2.9\%$ uncertainty is mostly driven by the span of individual extractions which use different (Monte Carlo or more analytical) approaches to correct for hadronization effects. Reduction of the non-pQCD uncertainties, e.g. through new e^+e^- jet data at lower (higher) \sqrt{s} for the event shapes (jet rates), plus jet cross sections with improved resummation (beyond NLL), are needed to reach α_s uncertainties below 1%.

5. Three closely-related Z hadronic decays observables measured at LEP ($R_\ell^0 = \Gamma_{\text{had}}/\Gamma_\ell$, $\sigma_0^{\text{had}} = 12\pi/m_Z \cdot \Gamma_e\Gamma_{\text{had}}/\Gamma_Z^2$, and Γ_{Z}) compared to N3LO calculations, yield\(^7\) $\alpha_s(m_Z^2) = 0.1196\pm0.0030$ with $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 2.5\%$. Uncertainties at the permil level will require high-precision and large-statistics measurements accessible e.g. with 10^{12} Z bosons at the FCC-ee\(^8\) (and associated 5-loop calculations, with reduced parametric uncertainties).

6. Top-pair cross sections, theoretically known at NNLO+NNLL, are the first hadron collider measurements that constrain α_s at NNLO accuracy. From the comparison of CMS data to pQCD, one obtains $\alpha_s(m_Z^2) = 0.1151 \pm 0.0028$ with a $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) = 2.5\%$ uncertainty (mostly dominated by the gluon PDF uncertainties)\(^9\). Preliminary combination of all $t\bar{t}$ measurements at LHC and Tevatron increases its value to $\alpha_s(m_Z^2) = 0.1186\pm0.0033$.

The χ^2-average of the unweighted values for these 6 subgroups of observables (dashed lines and shaded (yellow) bands in Fig. 1 left) is $\alpha_s(m_Z^2) = 0.1181 \pm 0.0013$, with a $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) = 1.1\%$ uncertainty (dotted line and grey band in Fig. 1 left, and top-right panels)\(^2\).
3 Other α_s extractions

There exist at least 8 other classes of observables, often computed at a lower accuracy (NLO, or approximately-NNLO, aka. NNLO*), used to determine the QCD coupling (Fig. 1 right, bottom), but not yet included in the world-average. Ordered by their energy scale, those are:

- The **pion decay factor** ($F_{\pi,\text{exp}} = 92.2 \pm 0.03 \pm 0.14$ MeV) has been used to extract $\alpha_s(m_Z^2) = 0.1174 \pm 0.0017$. Although the calculation is (“optimized”) NNLO, the low scales involved challenge the validity of the pQCD approach.

- The jet-energy dependence of the **soft** (low-z) parton-to-hadron fragmentation functions (FF), provides $\alpha_s(m_Z^2) = 0.1205 \pm 0.0022$ at NNLO*+NNLL accuracy, with a $\sim 2\%$ uncertainty, which could be halved including full-NNLO corrections.

- $\gamma\gamma$ measurements of the **photon structure function** $F_2^\gamma(x,Q^2)$ have been used to obtain $\alpha_s(m_Z^2) = 0.1198 \pm 0.0054$ at NLO4+NNLL accuracy, with a $\sim 2\%$ uncertainty, which could be halved including full-NNLO corrections.

- The Y decay ratio $R_\gamma \equiv \Gamma(Y(1S) \to \gamma X)/\Gamma(Y(1S) \to X)$ (with X = light hadrons) has been computed at NLO accuracy in the NRQCD framework. From the CLEO data one obtains $\alpha_s(m_Z^2) = 0.119 \pm 0.007$, with a $\sim 6\%$, uncertainty shared equally by experimental and theoretical systematics. NNLO corrections with improved long-distance matrix elements, and more precise measurements of the γ spectrum (and of the parton-to-photon FF) would allow for an extraction with $\delta\alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 2\%$ in a few years from now.

- From the scaling violations of the **hard** (high-z) parton-to-hadron FFs one extracts $\alpha_s(m_Z^2) = 0.1176 \pm 0.0055$ at NLO, with $\sim 5\%$ uncertainties, mostly of experimental ori-
gin13. Extension of the global FF fits at NNLO accuracy, and inclusion of new datasets (already available at B-factories) would allow reaching $\delta \alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 2\%$.

- The NNLO\textsuperscript* calculation of jet cross sections in DIS and photoproduction provides $\alpha_s(m_Z^2) = 0.120 \pm 0.004$ with $\delta \alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 3\%$ precision today14. Upcoming full-NNLO analyses15 could reduce this uncertainty to the $\sim 1.5\%$ level, whereas a future DIS machine (such as LHeC or FCC-ee) would further bring it below 1\%.

- Measurements of W hadronic decays, although computed at N3LO, provide today a very imprecise $\alpha_s(m_Z^2) = 0.117 \pm 0.030$ with $\pm 25\%$ uncertainty, due to the poor LEP data17. A competitive α_s extraction requires statistical samples of 10^8 W, available at FCC-ee, which (combined with N4LO corrections) can ultimately yield $\delta \alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 0.1\%$.

- Various jet observables at hadron colliders (ratio of 3- to 2-jets, 3-jet mass, inclusive cross sections) have tested asymptotic freedom at TeV scales. Combining those, one obtains $\alpha_s(m_Z^2) = 0.1179 \pm 0.0023$ at NLO accuracy, with $\delta \alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 2\%$ dominated by theoretical uncertainties. The imminent incorporation of NNLO corrections18 and a consistent combination (including correlations) of the multiple datasets available at Tevatron and LHC, may reduce the α_s uncertainties to the 1.5\% level in the upcoming years.

Assuming all 14 extraction methods discussed here are computed at NNLO (or above) accuracy, and provided that they yield consistent α_s results, a simple weighted-average would have an uncertainty of $\delta \alpha_s(m_Z^2)/\alpha_s(m_Z^2) \approx 0.35\%$, ~ 3 times better than the present value. A permil-level α_s uncertainty requires high-precision future e^+e^- colliders with very large Z and W samples, complemented with 4th-order pQCD corrections, and improved parametric uncertainties.

Acknowledgments I am grateful to S. Bethke and G. Salam for useful discussions, and to R. Pérez-Ramos and M. Srebre for common work in two of the new α_s extractions reported here.

References

2. K. A. Olive et al. [PDG Collab.], Chin. Phys. C 38 (2014) 090001; and S. Bethke, G. Dissa-
3. D. Buttazzo et al., JHEP 12 (2013) 089
8. M. Bicer et al. [TLEP Design Study Working Group], JHEP 1401 (2014) 164