Searches for heavy neutrinos, LFV

Raja Nandakumar

On behalf of the LHCb Collaboration

LHCP, Lund, 17 June 2016
Introduction

- LHCb for rare searches
- Search for LFV in $D^0 \rightarrow e^\pm \mu^\mp$
- Search for LFV in $\tau^- \rightarrow \mu^- \mu^+ \mu^-$
- Search for Majorana neutrinos in $B^- \rightarrow \pi^+ \mu^- \mu^-$
- Summary
LHCb as flavour factory

- pp collisions at 7, 8 TeV
- Full spectrum of B hadrons
 - B^0, B_s^0, B^+, B_c, L_b^0, ...
 - And c hadrons too
- $\mathcal{L} \sim 10^{32} - 10^{33}$ cm$^{-2}$s$^{-1}$
- $\int \mathcal{L} = 3.0$ fb$^{-1}$ in Run I

- Single arm forward spectrometer
- Acceptance $2 < \eta < 5$
- Momentum resolution:
 - $\delta p/p \sim 0.5 - 1\%$
- IP resolution $\sim 20\mu$m
- Excellent pid, trigger, ...
LHCb in Run II

- p-p collisions at 13 TeV
- \(\mathcal{L} \sim 10^{32} - 10^{33} \text{ cm}^{-2}\text{s}^{-1} \)
 - Luminosity levelling
 - Average Interactions / bunch crossing \(\sim 1 \)
- Aim for 8 pb\(^{-1}\)
- Precision measurements using high statistics
- Redesigned trigger
 - Automatised calibration and alignment
 - Offline rate of \(\sim 12.5 \text{ Khz} \)
 - 600 MB/s to storage
- Note - results presented today use only Run I data
Motivation

- Neutrino oscillations
 - Only possible with massive neutrinos
 - Needs SM extensions
 - e.g. see-saw mechanism, with heavy neutrinos

- LFV
 - Suppressed in SM (BF $\lesssim 10^{-40}$)
 - Contributions from ν oscillations

- Interesting ground for studies
 - Difficult to detect ν directly
 - Test for properties indirectly using precision studies
 - Modifications in rates from SM extensions
LFV decay $D^0 \rightarrow e^\pm \mu^\mp$

- Forbidden in SM
 - 2.6×10^{-7} (90%CL) from Belle
 - PRD 81 (2010) 091102
- Possible for various SM extensions
 - BR $\sim 10^{-6}$ for R-parity violating SUSY models
 - $\sim 10^{-8}$ for some leptoquark models
 - $\sim 10^{-14}$ for SM with extra fermions
LFV decay $D^0 \rightarrow e^\pm \mu^\mp$

- Analysis using Run I data
 - 3 fb$^{-1}$, $\sqrt{s} = 7–8$ TeV
 - Use D^0 from $D^{*+} \rightarrow D^0\pi^+$
 - Normalisation channel:
 $D^0 \rightarrow K^-\pi^+$

- Standard LHCb blind analysis
 - Pre-selection + MVA
 - Evaluate backgrounds
 - $\pi^+\pi^-$, $\pi^+e^+\nu_e$, $\pi^-\mu^+\nu_\mu$
 - Understand systematics
 - Unblind and extract fit values
 - Fit 3 bins of BDT output
 - 2D fit for Δm, m
 - Plot: Most signal-like BDT bin
LFV decay $D^0 \rightarrow e^\pm \mu^\mp$

Upper limit on BF

- 1.3×10^{-8} (90%)
- 1.6×10^{-8} (95%)
- Dominated by statistics
LFV decay $\tau^- \rightarrow \mu^- \mu^+ \mu^-$

- Large inclusive τ cross-section
 - From decays of c, b hadrons
 - $\sim 85 \mu$b at 7 TeV

- Analysis based on Run I data
 - 3 fb^{-1}, $\sqrt{s} = 7$–8 TeV

- Typical LHCb selection
 - Three μ tracks which make up a τ
 - Multiple MVAs
 - Separate optimizations for 2011 and 2012 data

- Normalised to
 - $D_s^- \rightarrow \phi(\mu^+ \mu^-) \pi^-$
LFV decay $\tau^- \rightarrow \mu^- \mu^+ \mu^-$

- No significant excess over background found

- Measured
 - $\text{BF} (\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 4.6 (5.6) \times 10^{-8}$
 - 90 (95) % CL

- Expected
 - $\text{BF} (\tau^- \rightarrow \mu^- \mu^+ \mu^-) < 5.0 (6.1) \times 10^{-8}$
Majorana neutrinos in LHCb

- Neutrino masses from see-saw mechanism
 - Likely mass has Majorana component
 - Heavy \((m \gg eV)\), unstable

- Majorana neutrinos
 - Neutrino-less double beta decay
 - Can be probed in LHC
 - Pairs of identical leptons
 - LFV, LNV

- Studies complementary to those from ATLAS / CMS
Majorana neutrinos in $B^- \rightarrow \pi^+\mu^-\mu^-$

- **Search for neutrinos with**
 - $250 \text{ MeV} < M < 5000 \text{ MeV}$
 - Two samples:
 - $\tau < 1 \text{ ps}$
 - $1 \leq \tau < 1000 \text{ ps}$

- **Normalise to**
 $B^- \rightarrow J/\psi K^- \text{ where } J/\psi \rightarrow \mu^+\mu^-$

- **Analysis using Run I data**
 - $3 \text{ fb}^{-1}, \sqrt{s} = 7–8 \text{ TeV}$

Graphs:

- **Norm Channel**
 - $m(J/\psi K^-) [\text{MeV}]$
 - $m(\pi^+\mu^+\mu^-) [\text{MeV}]$
 - $m(\pi^+\mu^+\mu^-) [\text{MeV}]$
Majorana neutrinos in $B^- \rightarrow \pi^+ \mu^- \mu^-$

- No signal found
- $BF(B^- \rightarrow \pi^+ \mu^- \mu^-) < 4 \times 10^{-9}$
- Also quote limits on coupling of 4th generation majorana neutrino to muons
Summary

- LHCb is an excellent b and c factory
 - Various searches for very rare decays performed
 - No signal so far
 - Various limits improved by \(\sim x10 \)
 - Starting to constrain some models
 - Still far from systematic wall
 - J. Prisciandaro talk on LU/LFV tests
 - Run II ongoing
 - Improved trigger system
 - L. Grillo talk on LHCb trigger and alignment
 - Larger data set than proportional to \(\mathcal{L} \)
 - Look forward to exciting times
 - A. Cardini talk on LHCb Upgrade
 - More analyses in future from LHCb for LFV / LNV tests