The spatial alignment of the detector and the accurate calibration of its subcomponents are essential elements to achieve the best physics performance, e.g. mass and impact parameter resolution.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.

The complete calibration of RICH detectors allows an exclusive selection using particle identification criteria.

Reconstruct the tracks using the current alignment constants.
Compute a new set of alignment constants minimizing a global χ^2.
Iterate until the χ^2-difference is below a threshold.

Two kinds of alignment tasks defined:
Analyzer: perform the track reconstruction based on the alignment constants computed by the iterator. Many instances run in parallel on ~1700 nodes of the HLT farm.
Iterator: collects the output of the analysers and minimizes the χ^2 computing the alignment constants for the next iteration. It runs on a single node.