Highlights from the LHCb Ion Physics Program

Michael Schmelling – MPI for Nuclear Physics
– on behalf of the LHCb collaboration –

Outline

- Introduction
- LHCb Detector and Physics Reach
- Proton-Lead Collisions
- Lead-Lead Collisions
- Fixed-Target Physics
- Summary and Outlook
1. INTRODUCTION

- theoretical understanding of strong interactions:
 - the QCD Lagrangian is well known and tested
 - many open questions in the non-perturbative regime
 - soft processes, bound states and high densities and temperatures

- an incomplete list of things to explore. . .
 - quark gluon plasma
 - cold nuclear matter effects
 - nucleon structure at large x
 - intrinsic charm in the nucleon
 - spin-structure of the nucleon
 - hadronization
 - diffractive scattering
Experimental approach

- **study hadronic collisions**
 - as a function of the centre-of-mass energy
 - for different beam-target combinations
 - reference given by pp collisions

Collider mode

Fixed target mode

\[\sqrt{s_{NN}} = 8.2 \text{ TeV} \]

\[\sqrt{s_{NN}} = 110 \text{ GeV} \]

\[\sqrt{s_{NN}} = 5.0 \text{ TeV} \]

\[\sqrt{s_{NN}} = 69 \text{ GeV} \]
2. LHCb Detector and Physics Reach

Vertexing, tracking, particle-ID and calorimetry in the forward region down to low p_T

Vertex detector
- IP resolution $\sim 20\mu m$
- Decay time resolution ~ 45 fs

RICH: $K/\pi/p$ separation
- $\varepsilon(K\rightarrow K) \sim 95\%$
- Mis-ID: $\varepsilon(\pi\rightarrow K) \sim 5\%$

Muon system
- μ identification: $\varepsilon(\mu\rightarrow \mu) \sim 97\%$
- Mis-ID: $\varepsilon(\pi\rightarrow \mu) \sim 1\%-3\%$

Dipole magnet
- Bending power 4 Tm

Tracking system
- $\Delta p/p = 0.5\% - 1.0\%$
 (5 GeV/c – 200 GeV/c)

Electromagnetic + hadronic calorimeters
Angular coverage of the LHC experiments

- ALICE
 - central
 - forward muon coverage

- ATLAS & CMS
 - central detectors

- LHCb
 - forward detector
 - tracking, particle-ID and calorimetry in full acceptance

Legend:
- hadron PID
- muon system
- lumi counters
- HCAL
- ECAL
- tracking

LHCb Highlights - LHCb detector and Physics Reach

M. Schmelling, SQM2016, June 27, 2016
Fixed-target physics with LHCb

SMOG: System for Measuring Overlap with Gas

- injection of gas into interaction region
- very simple robust system
- used for a precise luminosity determination

- possibility to inject (noble) gases: He, Ne, Ar (maybe Kr)
- fixed-target physics in pA and PbA configuration
Forward extension of the detector

→ HeRSCheL: High Rapidity Shower Counters for LHCb

- scintillators at large rapidities
- up to ± 114 m from IP
- central region not covered
- coverage $5 < |\eta| < 9$

→ huge gain for diffractive physics and central exclusive production

LHCb simulation results for the efficiency to see charged pions

$p_T > 0.5\text{ GeV/c}$

$p_T > 1.5\text{ GeV/c}$
available/upcoming LHCb running modes and $\sqrt{s_{NN}}$

<table>
<thead>
<tr>
<th>$E_{\text{beam}}(p)$</th>
<th>pp</th>
<th>p-Gas</th>
<th>p-Pb/Pb-p</th>
<th>Pb-Gas</th>
<th>Pb-Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>450 GeV</td>
<td>0.90 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.38 TeV</td>
<td>2.76 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5 TeV</td>
<td>5 TeV</td>
<td>69 GeV$^{(1)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.5 TeV</td>
<td>7 TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0 TeV</td>
<td>8 TeV</td>
<td>87 GeV$^{(2)}$</td>
<td>5 TeV</td>
<td>54 GeV$^{(3)}$</td>
<td></td>
</tr>
<tr>
<td>6.5 TeV</td>
<td>13 TeV</td>
<td>110 GeV$^{(4)}$</td>
<td>8.2 TeV</td>
<td>69 GeV$^{(5)}$</td>
<td>~5 TeV</td>
</tr>
</tbody>
</table>

- (1) SMOG with 40Ar few h (2015)
- (2) SMOG with 20Ne 2.5 h (2012)
- (3) SMOG with 20Ne 30 min (2013)
- (4) SMOG with 4He 8 h (2015) + 2 d (2016), 20Ne 12 h (2015), 40Ar 3 d (2015)
- (5) SMOG with 40Ar 1.5 weeks (2015)

→ bridge the gap from SPS to LHC in a single experiment
Phase space coverage of LHCb

- **kinematic acceptance for $E_{\text{beam}}(p)$ between 450 GeV and 7 TeV**

y^*: rapidity in nucleon-nucleon centre-of-mass system, with forward direction (+ values) in direction of the proton/beam.
Access to parton densities

probe x by inclusive particle production

mass M, rapidity y: $x_{1,2} \approx e^{\pm y} \frac{M}{\sqrt{s}}$

two x-values from nucleon/nuclear PDF for given y and $Q^2 = M^2$

boost between lab and nucleon-nucleon centre-of-mass system

- p on Pb: $\Delta y \approx 0.465$
- p on gas: $\Delta y \approx 4.8$
- Pb on gas: $\Delta y \approx 4.3$
study nuclear effects:

nuclear modification factor:

\[R_{pA}(y) = \frac{1}{A} \cdot \frac{d\sigma_{pA}/dy}{d\sigma_{pp}/dy} \]

forward-backward asymmetry:

\[R_{FB}(y) = \frac{\sigma_{pA}(+|y|)}{\sigma_{pA}(-|y|)} \]

- pp cross-section and experimental systematics cancel in \(R_{FB} \)
- flip beam directions to measure both hemispheres

results from 1.6 \(\text{nb}^{-1} \) pPb-data recorded in 2013
J/ψ and $\psi(2S)$ production in pPb collisions

- separate prompt and delayed components by a simultaneous fit of mass and pseudo-proper-time $t_z = (z_{J/\psi} - z_{PV}) \cdot M_{J/\psi}/p_z^{J/\psi}$

pA collisions:
- forward hemisphere
 - $1.5 < y < 4.0$
 - $p_T < 14$ GeV/c

Ap collisions:
- backward hemisphere
 - $-5.0 < y < -2.5$
 - $p_T < 14$ GeV/c
results require interpolation of pp cross-section to $\sqrt{s} = 5$ TeV

- $R_{pPb} \neq 1$: the nucleus is not a loose collection of independent nucleons
- tighter bound B-mesons less affected than prompt J/ψ
- J/ψ data agree with “energy loss + NLO shadowing”
- consistent results from ALICE and LHCb for stronger $\psi(2S)$ suppression
- J/ψ from b and $\psi(2S)$ from b expected to be consistent
J/ψ and $\psi(2S)$ production in pPb collisions

\rightarrow forward-backward asymmetries of $\psi(2S)$ versus J/ψ

- $\psi(2S)$ ratios closer to unity than J/ψ ratios
- J/ψ and $\psi(2S)$ consistent within uncertainties
- consistency expected by theoretical models
- resolve with 2016 pPb data (10x more than 2013)

Ferreiro et al. PRC88(2013)04791
Arleo, Peigne JHEP03(2013)122
Albacete et al. IJMPE22(2013)133007
Upsilon production in pPb collisions

- **statistics limited measurement**

- **kinematic range**: \(p_T < 15 \text{ GeV/c}, \ 1.5 < y < 4.0 \) and \(-5.0 < y < -2.5\)
- no differential measurements possible
- evidence for strong suppression of \(\Upsilon(2S) \) and \(\Upsilon(3S) \)
 - \(\Rightarrow 2016 \) data will allow a measurement
- study \(\Upsilon(1S) \) nuclear effects in common rapidity range \(2.5 < |y| < 4.0 \)
Upsilon production in pPb collisions

$\Upsilon(1S)$ nuclear modification factor and forward-backward asymmetry

- large uncertainties
- Upsilon consistent with J/ψ from b
- backward data consistent with expectations of “anti-shadowing”

- more data needed for firm conclusions
Forward production of prompt open charm in pA collisions

- $L = 0.11 \text{ nb}^{-1}$ (forward) and $L = 0.05 \text{ nb}^{-1}$ (backward)
- reconstruction in $D^0 \rightarrow K^−\pi^+ + \text{CC}$ decays
 - kinematic range: $p_T < 8 \text{ GeV/c}$, $1.5 < y^* < 4.0$ and $-5.0 < y^* < -2.5$
 - simultaneous fit of impact parameter and invariant mass
 - extraction of prompt yields down to $p_T \rightarrow 0$
D^0 production in **pPb** collisions

→ **differential cross-sections**

- similar \(p_T \) slopes in beam and target hemispheres
- more forward production in target hemisphere
significant deviations from unity, consistent with expectations
- theoretical uncertainties larger than experimental ones
- analysis is being updated to include full statistics
- measurement of nuclear modification factor will use 5 TeV pp data
clean signals: 4 backward-candidates, 11 forward-candidates

muon selection
- $p_T > 20\,\text{GeV}/c$, $2.0 < \eta < 4.5$
- $60 < M(\mu^+\mu^-) < 120\,\text{GeV}/c^2$

cross-section results

- $\sigma_{\text{fwd}} = 13.5 \pm 5.4_{4.0}^{5.0} \,(\text{stat}) \pm 1.2 \,(\text{syst}) \,\text{nb}$
- $\sigma_{\text{bwd}} = 10.7 \pm 8.4_{5.1}^{5.1} \,(\text{stat}) \pm 1.0 \,(\text{syst}) \,\text{nb}$

(expect $\sim 250 \, Z \rightarrow \mu^+\mu^- \, \text{in 2016}$)
Two-particle correlations in pPb collisions

- measure “per trigger-particle associated yield”
 - 2-dim correlation functions of prompt particles in \((\Delta \eta, \Delta \phi)\)
 - select particles in fixed \(p_T\)-range as “trigger”
 - study all pairs of particles with the “trigger”
 - compare associated yields per trigger
 - within an event \((S(\Delta \eta, \Delta \phi))\)
 - with random combinations \((B(\Delta \eta, \Delta \phi))\) from mixed events

- definition of the experimental observable

\[
\frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d\Delta \eta \, d\Delta \phi} = \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta, \Delta \phi)} \times B(0, 0)
\]

- \(L = 0.46 \text{nb}^{-1}\) (forward) and \(L = 0.30 \text{nb}^{-1}\) (backward)
- measurement in \(1.5 < y^* < 4.4\) and \(-5.4 < y^* < -2.5\)
- as function of relative and absolute activity in the acceptance
Two-particle correlations in pPb collisions

LHCb \(p+\text{Pb} \) \(\sqrt{s_{NN}} = 5 \text{ TeV} \)
1.0 < \(p_T < 2.0 \) GeV/c
Event class 50-100%

LHCb \(\text{Pb}+p \) \(\sqrt{s_{NN}} = 5 \text{ TeV} \)
1.0 < \(p_T < 2.0 \) GeV/c
Event class 50-100%

LHCb \(p+\text{Pb} \) \(\sqrt{s_{NN}} = 5 \text{ TeV} \)
1.0 < \(p_T < 2.0 \) GeV/c
Event class 0-3%

LHCb \(\text{Pb}+p \) \(\sqrt{s_{NN}} = 5 \text{ TeV} \)
1.0 < \(p_T < 2.0 \) GeV/c
Event class 0-3%

d\(N/d\Delta\eta/d\Delta\phi \)
d\(N/d\Delta\eta/d\Delta\phi \)

arXiv:2015.00439

low activity

high activity
Two-particle correlations in pPb collisions

quantitative results: growing near-side ridge with activity

- integrated yields vs $\Delta \phi$ outside jet peak

$$Y(\Delta \phi) = \frac{1}{0.9} \int_{2.0}^{2.9} d\Delta \eta \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pair}}}{d\Delta \eta d\Delta \phi}$$

- subtract offset (Zero-Yield-At-Minimum)

→ near-side ridge largest at $1 < p_T < 2$ GeV/c

→ equal relative activity:
 stronger correlation in Pb-hemisphere

→ equal absolute activity:
 similar correlation in both hemispheres
4. **LEAD-LEAD COLLISIONS**

➔ *first participation in Pb-Pb running by LHCb in December 2015*

- 24 colliding bunches, \(L = 3 - 5 \mu b^{-1} \),
- minimum bias trigger - i.e. all inelastic interactions recorded

![PbPb collision with a \(J/\psi \) candidate in 1130 reconstructed tracks](image)
Centrality determination

ongoing work . . .

- experimental observable: ECAL or HCAL energy sum
 - no saturation even for most central collisions
 - minimal correlation with particle production measurements

first step: event classification in terms of ECAL activity
- tracking may be possible up to ~15k VELO hits
- corresponding activity range: 100% - 50%

[first look at the data](https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015)
\(J/\psi \) and open charm in PbPb collisions

\[J/\psi \rightarrow \mu^+ \mu^- \text{ decays} \]

\[D^0 \rightarrow K^- \pi^+ + \text{CC decays} \]

[Graphs showing the distribution of candidates per 8.0 MeV/c for different mass ranges and event activity conditions.]

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015

LHCb Highlights - Lead-Lead Collisions

M. Schmelling, SQM2016, June 27, 2016
Strangeness production in PbPb collisions

$K_S^0 \rightarrow \pi^+ \pi^-$ decays

$L \rightarrow p \pi^- + CC$ decays
J/ψ production in ultra-peripheral collisions

→ **QED with extreme field strengths and large cross-sections**

- events containing only two tracks in the spectrometer
- coherent photoproduction of J/ψ mesons

![Graph showing $M(\mu\mu)$ and $p_T(\mu\mu)$ distributions](https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015)

→ very clean signature
→ very soft transverse momentum spectrum

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015
→ strangeness production in pNe collisions (2012) at $\sqrt{s_{NN}} = 87$ GeV
J/ψ and open charm production

charm production in pNe collisions (2015) at $\sqrt{s_{NN}} = 110$ GeV

- clean signals
- next: luminosity determination based on elastic pe^- scattering
- goal: cross-section measurements for He, Ne and Ar targets

https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbPlots2015
Links to other communities

- *cosmic ray physics and cosmology*
 - understanding of extensive air showers → MC tuning
 - understanding the AMS antiproton/proton ratio

AMS \bar{p}/p results and modeling

use fixed-target measurements to clarify: QCD or Dark Matter annihilation
6. SUMMARY AND OUTLOOK

LHCb is much more than a pp heavy flavour experiment . . .

- participation in pp, pPb and since 2015 also PbPb running
- fixed-target physics program with (so far) \{p,Pb\} on \{He,Ne,Ar\}
- analyses of pPb collisions
 - probe nuclear effects with J/ψ, $\psi(2S)$ (prompt & from b), Υ, D^0 and Z
 - 2-particle near-side ridge correlations vs relative and absolute activity
- analysis of PbPb and fixed-target data starting
 - PbPb physics results expected up to centralities around 50%
 - promising signals for large-x fixed-target physics
- significantly enlarged physics reach with 2016 pPb data
 - 10x more statistics to address open issues
 - Drell-Yan production to disentangle energy loss and shadowing
 - associated $J/\psi-D^0$ production

Stay tuned to the LHCb ion physics and fixed-target program!