Precision measurements and searches with single and multiple gauge bosons with the ATLAS detector

Evgeny Soldatov

National Research Nuclear University “MEPhI”

On behalf of the ATLAS Collaboration

5th International Conference on New Frontiers in Physics, Kolumbari, Greece
July 9, 2016
A lot of nice ATLAS SM results using Run1/Run2 data were currently produced.

Precision increased up to comparisons with NNLO theory predictions.
Motivation

- Two main goals of Standard Model (SM) measurements in ATLAS are: to test theory with high precision and to find signs of new physics.

More details:

Measurement of integrated, differential cross sections and different angular distributions
- to prove validity of Standard Model at the TeV scale;
- to compare with theory predictions of higher order QCD and QED effects;
- to probe the proton structure;
- to understand irreducible diboson backgrounds into Higgs and exotic analyses.

Extrapolation of self-coupling structure of gauge bosons
- will improve our understanding of electroweak symmetry breaking and unitarity;
- intersect with determination of Higgs couplings;
- indicate “new physics” if anomalous triple/quartic gauge couplings are present.
Cross-section measurement in a nutshell

Number of observed events in fiducial region

Number of background (MC simulation / data-driven)

\[\sigma \times BR = \frac{N_{obs} - N_{bkg}}{A \times C \times \int Ldt} \]

Signal acceptance on generator level in fiducial region

Signal efficiency on detector level

\[A = \frac{N_{fid}}{N_{gen}} \]

\[C = \frac{N_{sel}}{N_{fid}} \]

Differential cross section: Study of unfolded differential distributions and probe high momentum events for anomalous TGC’s and QGC’s
Single gauge boson measurements
Inclusive W and $Z @ 13$ TeV

Starting point:
Data: $L=81$ pb$^{-1} \pm 2.1\%$ (50 ns)
MC signal: Powheg+Pythia8; Main bkgs: jet-jet, Z/W inc.

Selection for fiducial region:
$W \rightarrow e\nu/\mu\nu$ \quad $m_T(W) > 50$ GeV

$Z \rightarrow e\nu/\mu\nu$ \quad 66 GeV $< m_{ll} < 116$ GeV

$P_T(l,\nu) > 25$ GeV \quad $|\eta|<2.5$

Cross section measurement results:

- Good agreement with NNLO QCD and NLO EW prediction
 (several different PDF sets were considered)
- Dominant uncertainties are from Luminosity, JES and
 multijet bkg.

arXiv:1603.09222
Cross section ratios:

<table>
<thead>
<tr>
<th></th>
<th>Measured ratio</th>
<th>Predicted ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>W^+/W^-</td>
<td>$1.295 \pm 0.003 \pm 0.010$</td>
<td>1.30 ± 0.01</td>
</tr>
<tr>
<td>W^\pm/Z</td>
<td>$10.31 \pm 0.04 \pm 0.20$</td>
<td>10.54 ± 0.12</td>
</tr>
</tbody>
</table>

- Some uncertainties are partially cancelled in ratios (lumi, lepton ID and trigger)
- W^+/W^-: better agreement with CT14nnlo and MMHT14nnlo (precision: ~1%: just uncorrelated part of multijet bkg uncertainty)
- W/Z: good agreement for all PDF sets (precision: ~2%: multijet bkg, JES, JER error).
 - To improve PDFs – it needs higher precision.

Some sensitive to low-\(x\) u-v d quark PDFs

Some sensitive to s quark PDFs

\(R_{W^+/W^-} = \frac{\sigma_{W^+}^{\text{fid}}}{\sigma_{W^-}^{\text{fid}}}\)

\(R_{W/Z} = \frac{\sigma_{W}^{\text{fid}}}{\sigma_{Z}^{\text{fid}}}\)
Angular coefficients in Z boson events @ 8 TeV

Motivation:
- Measurement of production dynamics through a spin 1 Z via spin correlation between initial and final state partons.
- Use Collins-Soper (CS) reference frame: it defines lepton θ and ϕ. Coefficients can be expressed as a function of θ and ϕ:

$$\langle \frac{1}{2} (1 - 3 \cos^2 \theta) \rangle = \frac{3}{20} (A_0 - \frac{2}{3}); \quad \langle \sin 2\theta \cos \phi \rangle = \frac{1}{5} A_1; \quad \langle \sin^2 \theta \cos 2\phi \rangle = \frac{1}{10} A_2;$$

$$\langle \sin \theta \cos \phi \rangle = \frac{1}{4} A_3; \quad \langle \cos \theta \rangle = \frac{1}{4} A_4; \quad \langle \sin^2 \theta \sin 2\phi \rangle = \frac{1}{5} A_5;$$

$$\langle \sin 2\theta \sin \phi \rangle = \frac{1}{5} A_6; \quad \langle \sin \theta \sin \phi \rangle = \frac{1}{4} A_7.$$

Selection for fiducial region:
$Z \rightarrow ee/\mu\mu \quad 80 \text{ GeV} < m_{ll} < 100 \text{ GeV}$
Central-central channel: $p_T(l) > 25 \text{ GeV} \quad |\eta_l| < 2.4 \quad \text{OR}$
Central-forward channel: $p_T(e) > 20 \text{ GeV} \quad 2.5 < |\eta_e| < 4.9$

Result:
Coefficients A_{0-7} and comparison with theory:
- In general comparison with Powheg+MINLO and DYNNLO show good agreement with data.
- A_0-A_2 confirms Lam-Tung breaking @ higher orders than NLO → very sensitive probe of higher order QCD corrections!

Deviations are due to higher-order QCD effects
Multiple gauge boson measurements
WZ @ 8 TeV

Starting point:
Data: \(L = 20.3\ \text{fb}^{-1} \pm 1.9\%\)
MC signal: Powheg+Pythia8; Main bkgs: misID leptons, ZZ (~20% total).

Selection for fiducial region:
\(W^\pm Z \rightarrow l^\pm v l^\mp l^\mp (l=e/\mu):\) On shell \(Z\) – \(ll\) invariant mass within 10 GeV near \(Z\) peak;
\(p_T(l) > 15(20)\ \text{GeV}\) for lepton from \(Z(W)\), lepton \(|\eta|<2.5\); \(m_T(l\nu) > 30\ \text{GeV}\)

Measurements of:
- Integrated \(\sigma\), differential \(\sigma\) distributions, \(\sigma(W^+Z)/\sigma(W^-Z)\) and limits set on aTGC’s.
- Search for VBS WZ and limits set on aQGC’s in VBS phase space.

Graphs:
- Good overall agreement between data and predictions.
- Fair agreement, NNLO can help
Systematics:

- Statistical and systematic uncertainties for the ratio $\sigma(W^+Z)/\sigma(W^-Z)$ is roughly on the same order as for integrated σ.
- Uncertainty dominated by electron Id. efficiency, luminosity, muon reco. efficiency and knowledge of mis-id background.
- Dominant theory uncertainty due to QCD scale uncertainty.

\[
\sigma_{W\pm Z}^{\text{tot}} = 24.3 \pm 0.6\,\text{(stat)} \pm 0.6\,(\text{sys}) \pm 0.4\,(\text{th}) \pm 0.5\,(\text{lumi}) \,\text{pb} \\
\sigma_{W\pm Z}^{\text{theory}} = 21.0 \pm 1.6 \,\text{pb}
\]

NNLO predictions can make agreement better.
Starting point:
Data: $L = 3.2 \text{ fb}^{-1} \pm 2.1\%$
MC signal: Powheg+Pythia8; Main bkgs: misID leptons, ZZ ($\sim20\%$ total).

Selection for fiducial region:
$W^\pm Z \rightarrow l^\pm v l^\pm$ ($l = e/\mu$): On shell $Z - ll$ invariant mass within 10 GeV near Z peak;
$p_T(l) > 15 (20)$ GeV for lepton from $Z(W)$, lepton $|\eta| < 2.5$; $m_{T(lv)} > 30$ GeV

Measurements of:
- Integrated σ, differential σ vs jet multiplicity and $\sigma(W^+Z)/\sigma(W-Z)$.

$\sigma_{W^\pm Z}^{\text{tot}} = 50.6 \pm 2.6 \text{ (stat.)} \pm 2.0 \text{ (sys.)} \pm 0.9 \text{ (th.)} \pm 1.2 \text{ (lumi.) pb}$

$\sigma_{W^\pm Z}^{\text{theory}} = 48.2^{+1.1}_{-1.0} \text{ (scale) pb}$

Comparison of data, NLO and NNLO predictions

NLO and NNLO are quite different

Good overall agreement between data and predictions.
Systematics:

- Statistical and systematic uncertainties for the $\sigma(W^+Z)/\sigma(W^-Z)$ is roughly on the same order as for integrated σ.
- Uncertainty dominated by electron Id. efficiency, luminosity, muon reco. efficiency and knowledge of mis-id background.
- Dominant theory uncertainty due to QCD scale uncertainty.

$$\frac{\sigma_{\text{fid.}}^{W^+Z \rightarrow l'\nu ll}}{\sigma_{\text{fid.}}^{W^-Z \rightarrow l'\nu ll}} = 1.39 \pm 0.14 \text{ (stat.)} \pm 0.03 \text{ (sys.)}$$
Starting point:
Data: $L = 3.2 \, fb^{-1} \pm 2.1\%$
MC signal: Powheg+Pythia8; Main bkgs: $t\bar{t}Z$, non-hadronic triboson ($\sim 1\%$ total).

Selection for fiducial region:
$ZZ \rightarrow 4l(4l=4e/4\mu/2e2\mu)$: for each $Z - 66 \, GeV < m_{ll} < 116 \, GeV$;
$p_T(l) > 20 \, GeV$, lepton $|\eta| < 2.7$

Measurements of:
- Integrated σ

$$\sigma_{ZZ}^{tot} = 16.7^{+2.2}_{-2.0}^{(stat.)} +0.9_{-0.7}^{(syst.)} +1.0_{-0.7}^{(lumi.)} \, pb$$

$NNLO$ prediction:

$$\sigma_{ZZ}^{th} = 15.6^{+0.4}_{-0.4} \, pb$$

Measurement is statistically dominated.
Starting point:
Data: $L=20.3\text{ fb}^{-1} \pm 1.9\%$
MC signal: Powheg+Pythia8; Main bkgs: top quark, W+jets, DY (~25% total).

Selection for fiducial region:
$W^+W^-\rightarrow ll\nu\nu(l=e/\mu)$: $p_T(\nu\nu)>20(45)$ GeV for $e\mu(ee/\mu\mu)$; $|m_Z-m_{ll}|>15$ GeV for $ee/\mu\mu$ events. $p_T(l)>25(20)$ GeV for (sub)leading lepton, lepton $|\eta|<2.4(2.47)$ for $\mu(e)$. Jet veto applied.

Measurements of:
- Integrated σ, differential σ distributions and limits set on aTGC’s.

$$\sigma_{\text{tot}}(pp \rightarrow WW) = 71.1\pm1.1(\text{stat})^{+5.7}_{-5.0}(\text{syst})\pm1.4(\text{lumi})\text{ pb} \quad \sigma(\text{NNLO}_{\text{tot}})_{\text{th}} = 63.2^{+1.6}_{-1.4}(\text{scale})\pm1.2(\text{PDF})$$

Measurement is in agreement with NNLO theory (integrated and differential).
Main systematics from JES, multijet bkg, jet veto, soft QCD.
Starting point:
Data: $L = 20.3 \text{ fb}^{-1} \pm 1.9\%$
MC signal: Herwig++/FPMC; Main bkg: $Z/\gamma^* \rightarrow \tau \tau, \text{VV}$

Event selection:
$\gamma\gamma \rightarrow W^+W^- \rightarrow e\mu\nu\nu$: $p_T(e\mu)>30 \text{ GeV}; m_{ll}>20 \text{ GeV};$
$p_T(l)>25(20) \text{ GeV}$ for leading(subleading) lepton, $|\eta_l|<2.5(2.47)$ for $\mu(e);$
Exclusivity selection: no extra tracks within $\Delta z=1 \text{ mm}$ from z average of 2 selected leptons.

Measurements of:
- Integrated σ and limits set on aQGC’s.

Measurement is in agreement with theory, uncertainty is statistically dominated.
Starting point:
Data: L=20.3 fb\(^{-1}\) ± 1.9%
MC signal: Sherpa; Main bkg: Z+jets - for ll\(\gamma\)(~15%), γ+jets, Wγ, W(\(\ell\ell\)γ) – for \(\nu\nu\gamma\)(~40-60%).

Selection for fiducial region:
\(Z\gamma\rightarrow ll\gamma(l=e/\mu)\): \(p_T(l)>25\) GeV, \(|\eta_l|<2.47; m_{ll}>40\) GeV; \(E_T(\gamma)>15\) GeV, \(|\eta_\gamma|<2.37\).
\(Z\gamma\rightarrow \nu\nu\gamma\): \(E_T(\gamma)>130\) GeV, \(|\eta_\gamma|<2.37; p_T(\nu\nu)>100\) GeV; \(\Delta\phi[\gamma, p_T(\nu\nu)]>\pi/2\).

Measurements of:
- Integrated σ, differential σ distributions and limits set on aTGC's.
- Measured cross section agrees well with SM within uncertainties
- Main uncertainty on: lepton ISO (ll\(\gamma\)), JES, lumi, γ-ISO (\(\nu\nu\gamma\))
Starting point:
Data: L=20.3 fb\(^{-1}\) ± 1.9%
MC signal: Sherpa; Main bkgs: Zjets - for \(\ell\ell\gamma\) (~15-30%), \(\gamma+jets\), W(eνγ) – for ννγγ (~50-60%).

Selection for fiducial region:
\(Z\gamma\gamma \rightarrow \ell\ell\gamma\gamma(\ell=e/\mu): p_T(\ell)>25\text{ GeV, } |\eta_{\ell}|<2.47; m_{\ell\ell}>40\text{ GeV, } E_T(\gamma)>15\text{ GeV, } |\eta_\gamma|<2.37.
\(Z\gamma\gamma \rightarrow \nu\nu\gamma\gamma: E_T(\gamma)>22\text{ GeV, } |\eta_\gamma|<2.37; p_T(\nu\nu)>110\text{ GeV, } \Delta\phi[\gamma\gamma, \nu\nu]>5\pi/6\)

Measurements of:
- Integrated \(\sigma\) and limits set on aQGC’s.

- Measured cross section agrees with SM within uncertainties
- Main uncertainty on: lepton ISO (\(\ell\ell\gamma\)), \(\gamma\)-ID, JES, lumi, \(\gamma\)-ISO (\(\nu\nu\gamma\))

\(6\sigma\) combined \(\ell\ell\gamma\gamma\) significance
Multiple gauge boson measurements: aGC

Coupling combinations

Charged couplings:
\(\gamma WW, ZWW, WWZZ, WWZ\gamma, WW\gamma\gamma \) - allowed within the SM.

Neutral couplings:
\(ZZ\gamma, \gamma\gamma Z, ZZZ, ZZ\gamma\gamma, Z\gamma\gamma\gamma \) - not allowed within the SM.

Anomalous coupling approaches

aTGC: effective Lagrangian

aQGC: effective field theory

Parameters of the couplings:

<table>
<thead>
<tr>
<th>Coupling</th>
<th>Parameters</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW(\gamma)</td>
<td>(\lambda_{\gamma}, \Delta k_{\gamma})</td>
<td>WW, W(\gamma)</td>
</tr>
<tr>
<td>WWZ</td>
<td>(\lambda Z, \Delta k Z, 4g_{\gamma}^2)</td>
<td>WW, WZ</td>
</tr>
<tr>
<td>ZZ(\gamma)</td>
<td>(h^Z_3, h^Z_4)</td>
<td>Z(\gamma)</td>
</tr>
<tr>
<td>Z(\gamma)</td>
<td>(h^\gamma_3, h^\gamma_4)</td>
<td>Z(\gamma)</td>
</tr>
<tr>
<td>Z(\gamma)Z</td>
<td>(f_{\gamma 0}, f_{\gamma 5})</td>
<td>ZZ</td>
</tr>
<tr>
<td>Z(\gamma)Z</td>
<td>(f_{\gamma 0}, f_{\gamma 5})</td>
<td>ZZ</td>
</tr>
</tbody>
</table>

Table of couplings

<table>
<thead>
<tr>
<th></th>
<th>WWWWW</th>
<th>WWZZZ</th>
<th>ZZZZZ</th>
<th>WW(\gamma)Z</th>
<th>WW(\gamma)\gamma</th>
<th>ZZZ(\gamma)</th>
<th>ZZZ(\gamma\gamma)</th>
<th>ZZZ(\gamma\gamma\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{S,0}, L_{S,1})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>(L_{M,0}, L_{M,1}, L_{M,6}, L_{M,7})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(L_{M,2}, L_{M,3}, L_{M,4}, L_{M,5})</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>(L_{T,0}, L_{T,1}, L_{T,2})</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(L_{T,5}, L_{T,6}, L_{T,7})</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(L_{T,8}, L_{T,9})</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

E. Soldatov | ICNFP’16 | 09.07.2016 | № 19
Latest aTGC results: charged couplings

Effect of aTGC on kinematic distributions:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>$\mathcal{L} \text{ fb}^{-1}$</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>[-4.3e-02, 4.3e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-6.0e-02, 4.6e-02]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-8.6e-02, 4.8e-02]</td>
<td>19.4 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-1.9e-01, 3.0e-01]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-7.4e-02, 5.1e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-9.0e-02, 1.0e-01]</td>
<td>5.0 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-9.4e-02, 3.3e-02]</td>
<td>0.7 fb$^{-1}$</td>
<td>0.20 TeV</td>
</tr>
</tbody>
</table>

Δk_z

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>$\mathcal{L} \text{ fb}^{-1}$</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>[-4.2e-02, 5.9e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-1.9e-01, 1.9e-02]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-4.8e-02, 4.8e-02]</td>
<td>4.9 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-2.4e-02, 2.4e-02]</td>
<td>19.4 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-4.6e-02, 4.7e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-1.6e-02, 1.6e-02]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-3.9e-02, 4.0e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-3.8e-02, 3.0e-02]</td>
<td>5.0 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-5.9e-02, 1.7e-02]</td>
<td>0.7 fb$^{-1}$</td>
<td>0.20 TeV</td>
</tr>
</tbody>
</table>

λ_z

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>$\mathcal{L} \text{ fb}^{-1}$</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>[-9.5e-02, 9.5e-02]</td>
<td>4.9 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-4.7e-02, 2.2e-02]</td>
<td>19.4 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-1.9e-02, 2.9e-02]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-5.5e-02, 7.1e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WZ</td>
<td>[-5.4e-02, 2.1e-02]</td>
<td>0.7 fb$^{-1}$</td>
<td>0.20 TeV</td>
</tr>
</tbody>
</table>

Δg_z

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>$\mathcal{L} \text{ fb}^{-1}$</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW</td>
<td>[-3.4e-02, 8.4e-02]</td>
<td>8.6 fb$^{-1}$</td>
<td>1.96 TeV</td>
</tr>
</tbody>
</table>

aTGC Limits @95% C.L.
Latest aTGC results: charged couplings II

Mar 2016

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>$\int L dt$</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W_γ$</td>
<td>[-4.1e-01, 4.6e-01]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>W_T</td>
<td>[-3.8e-01, 2.9e-01]</td>
<td>5.0 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-1.2e-01, 1.7e-01]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-2.1e-01, 2.2e-01]</td>
<td>4.9 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-1.3e-01, 9.5e-02]</td>
<td>19.4 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-1.1e-01, 1.4e-01]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>WW</td>
<td>[-1.6e-01, 2.5e-01]</td>
<td>5.0 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>D0 Comb.</td>
<td>[-5.9e-02, 6.6e-02]</td>
<td>8.6 fb$^{-1}$</td>
<td>1.96 TeV</td>
</tr>
<tr>
<td>LEP Comb.</td>
<td>[-9.9e-02, 6.6e-02]</td>
<td>0.7 fb$^{-1}$</td>
<td>0.20 TeV</td>
</tr>
</tbody>
</table>

ATLAS

$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

95% C.L. with no constraints
Latest aTGC results: neutral couplings

$Z\gamma$ @ 8 TeV

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>$\int L dt$</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\gamma(\ell\nu,\gamma\gamma)$</td>
<td>[-1.5e-02, 1.6e-02]</td>
<td>4.6 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>$Z\gamma(\ell\nu,\nu\gamma)$</td>
<td>[-9.5e-04, 9.9e-04]</td>
<td>20.3 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma(\ell\gamma,\nu\gamma)$</td>
<td>[-2.9e-03, 2.9e-03]</td>
<td>5.0 fb$^{-1}$</td>
<td>7 TeV</td>
</tr>
<tr>
<td>$Z\gamma(\ell\gamma,\gamma\gamma)$</td>
<td>[-4.6e-03, 4.6e-03]</td>
<td>19.5 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma(\nu\nu,\gamma\gamma)$</td>
<td>[-1.1e-03, 9.0e-04]</td>
<td>19.6 fb$^{-1}$</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma(\nu\gamma,\gamma\gamma)$</td>
<td>[-2.2e-02, 2.0e-02]</td>
<td>5.1 fb$^{-1}$</td>
<td>1.96 Te3</td>
</tr>
</tbody>
</table>

$Z\gamma$ @ 8 TeV, 20.3 fb$^{-1}$
Latest aQGC results

Effect of aQGC on kinematic distributions:

$\gamma\gamma \rightarrow WW \, @ \, 8 \, TeV$

$\gamma\gamma \rightarrow WW \, @ \, 8 \, TeV$
Latest aQGC results II

Channel Limits

<table>
<thead>
<tr>
<th>Channel</th>
<th>Limits</th>
<th>\mathcal{L}_{det} (fb$^{-1}$)</th>
<th>\mathcal{L}_{s} (8 TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-3.8e+01, 3.8e+01]$</td>
<td>19.4</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma\gamma$</td>
<td>$[-1.6e+01, 1.9e+01]$</td>
<td>20.3</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-1.6e+01, 1.6e+01]$</td>
<td>20.3</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-2.5e+01, 2.4e+01]$</td>
<td>19.3</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$[-3.8e+00, 3.4e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>$[-5.4e+00, 5.6e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>$[-4.2e+00, 4.6e+00]$</td>
<td>19.4</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-4.6e+01, 4.7e+01]$</td>
<td>19.4</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$[-4.4e+00, 4.4e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>$[-3.7e+00, 4.0e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>$[-2.1e+00, 2.4e+00]$</td>
<td>19.4</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-9.9e+00, 9.0e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-1.1e+01, 1.2e+01]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>$[-5.9e+00, 7.1e+00]$</td>
<td>19.4</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-9.3e+00, 9.1e+00]$</td>
<td>20.3</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-3.8e+00, 3.8e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-2.8e+00, 3.0e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$W\gamma\gamma$</td>
<td>$[-7.3e+00, 7.7e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$[-1.8e+00, 1.8e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$[-7.4e+00, 7.4e+00]$</td>
<td>20.3</td>
<td>8 TeV</td>
</tr>
<tr>
<td>$Z\gamma$</td>
<td>$[-4.0e+00, 4.0e+00]$</td>
<td>19.7</td>
<td>8 TeV</td>
</tr>
</tbody>
</table>

aQGC Limits @95% C.L. [TeV$^{-4}$]

![EWK WZ @ 8 TeV](image_url)

- **Obs. 95% C.L. $W^\pm Z^{ij}$**
- **Exp. 95% C.L. $W^\pm Z^{ij}$**
- **1 σ expected**
- **2 σ expected**

K-matrix unitarization

pp $\rightarrow W^\pm Z^{ij}$

E. Soldatov | **ICNFP'16** | **09.07.2016** | **№ 24**
Conclusions

- A lot of new results from ATLAS experiment were shown.

- Latest single and multiboson measurements using run1 and run2 datasets are compatible with SM expectations (NLO/NNLO).

- Many differential cross-section distributions published.

- Ratios of the cross sections allow to probe proton structure.

- Z boson decay angular coefficients allow to probe its production dynamics.

- Very strong aTGC and aQGC limits set. No deviations from SM observed.

- Looking forward to the new run2 results!
Motivation: Testing different aspects of QCD:
- soft gluon resummation
- fixed-order perturbative QCD predictions
- parton shower models

Selection for fiducial region:
$Z \rightarrow ee/\mu\mu$ $66 \text{ GeV} < m_{ll} < 116 \text{ GeV}$
\[p_T(l) > 20 \text{ GeV} \quad |\eta_l|<2.4 \]

Result:
QCD predictions comparison with RESBOS
- Low ϕ^*_η and $d\sigma/dp_T^{||}$: dominated by soft-gluon-resummation effects → RESBOS predictions consistent with the data
- High ϕ^*_η and $d\sigma/dp_T^{||}$: sensitive to hard parton emissions → RESBOS differs from data

Comparison to PS approach and to fixed order QCD done also. Theoretical predictions describe data well.

Study $d\sigma/dp_T^{||}$ and $d\sigma/d\phi^*_\eta$ in bins of m_{ll} and $|y_{ll}|$
Drell-Yan lepton pairs transverse momentum and $\phi^* @ 8$ TeV

Comparison to PS approach:

- For $5 < p_T(ll) < 100$ GeV description of MC is compatible with data at 10% level
- Powheg-Pythia – better agreement with data.
- Same study was performed for $d\sigma/d\phi^*_{\eta}$, which shows same behavior
- PS MC’s describe well (maximal discrepancies – 5%)
Drell-Yan lepton pairs transverse momentum and ϕ^* @ 8 TeV

Comparison to fixed-order QCD:

- Low p_T^{ll} discrepancies expected because soft gluon emissions dominant
- Good shape description for $p_T^{ll} > 30$ GeV, but normalization systematically 15% lower than data
- Recent NNLO calculations show improved agreement with data
Limits on Anomalous Gauge Couplings: $Z\gamma/Z\gamma\gamma$

aTGC

Vertex function approach

ATLAS Preliminary 95% C.L., $\Lambda = \infty$

$\times 10^3$ Coupling strength

- W^+W^- CMS, $\sqrt{s}=8$ TeV, 19.4 fb$^{-1}$
- $W\gamma\gamma$ ATLAS, $\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$
- $Z\gamma\gamma$ ATLAS, $\sqrt{s}=8$ TeV, 20.3 fb$^{-1}$
- $WW\gamma$ CMS, $\sqrt{s}=8$ TeV, 19.3 fb$^{-1}$

aQGC

EFT approach

ATLAS Preliminary 95% C.L.

$\Lambda_{\text{FF}} = \infty$

Coupling strength [TeV$^{-4}$]

- f_{10}/Λ^4
- f_{15}/Λ^4
- f_{19}/Λ^4

No sign of deviation from SM predictions

E. Soldatov | ICNFP'16 | 09.07.2016 | № 30