Search for lepton flavour violating decays of the Higgs boson to $e\tau$ and $e\mu$ in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A direct search for lepton flavour violating decays of the Higgs boson (H) in the $H \rightarrow e\tau$ and $H \rightarrow e\mu$ channels is described. The data sample used in the search was collected in proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS detector at the LHC and corresponds to an integrated luminosity of 19.7 fb^{-1}. No evidence is found for lepton flavour violating decays in either final state. Upper limits on the branching fractions, $B(H \rightarrow e\tau) < 0.69\%$ and $B(H \rightarrow e\mu) < 0.035\%$, are set at the 95\% confidence level. The constraint set on $B(H \rightarrow e\tau)$ is an order of magnitude more stringent than the existing indirect limits. The limits are used to constrain the corresponding flavour violating Yukawa couplings, absent in the standard model.

1 Introduction

The discovery of the Higgs boson [1-5] has generated great interest in exploring its properties. In the standard model (SM), lepton flavour violating (LFV) decays of the Higgs boson are forbidden. Such decays can occur naturally in models with more than one Higgs boson doublet [4]. They also arise in supersymmetric models [5-11], composite Higgs models [12,13], models with flavour symmetries [14], Randall–Sundrum models [15-17], and others [18-26]. The CMS Collaboration has recently published a search in the $H \rightarrow \mu \tau$ channel showing an excess of data with respect to the SM background-only hypothesis at $M_H = 125$ GeV with a significance of 2.4 standard deviations (σ). A constraint is set on the branching fraction $B(H \rightarrow \mu \tau) < 1.51\%$ at 95\% confidence level (CL), while the best fit branching fraction is $B(H \rightarrow \mu \tau) = (0.84 \pm 0.39\%)$. The ATLAS Collaboration finds a deviation from the background expectation of 1.3σ significance in the $H \rightarrow \mu \tau$ channel and sets an upper limit of $B(H \rightarrow \mu \tau) < 1.85\%$ at 95\% CL with a best fit branching fraction of $B(H \rightarrow \mu \tau) = (0.77 \pm 0.62\%)$ [28]. To date, no dedicated searches have been published for the $H \rightarrow e\mu$ channel. The ATLAS collaboration recently reported searches for $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$, finding no significant excess of events over the background expectation. The searches in channels with leptonically decaying tau are sensitive only to a difference between $B(H \rightarrow e\tau)$ and $B(H \rightarrow \mu\tau)$. These are combined with the searches in channels with hadronic tau decays to set limits of $B(H \rightarrow e\tau) < 1.04\%$, $B(H \rightarrow \mu\tau) < 1.43\%$ at 95\% CL [29]. There are also indirect constraints. The presence of LFV Higgs boson couplings allows, $\mu \rightarrow e$, $\tau \rightarrow \mu$, and $\tau \rightarrow e$ to proceed via a virtual Higgs boson [30,31]. The experimental limits on these decays have been translated into constraints on $B(H \rightarrow e\mu)$, $B(H \rightarrow \mu\tau)$ and $B(H \rightarrow e\tau)$ [32-33]. The null result for $\mu \rightarrow e\gamma$ [34] strongly constrains $B(H \rightarrow e\gamma) < O(10^{-8})$. However, the constraint $B(H \rightarrow e\tau) < O(10\%)$ is much less stringent. This comes from searches for rare τ decays [35] such as $\tau \rightarrow e\gamma$, and the measurement of the electron magnetic moment. Exclusion limits on the electric dipole moment of the electron [36] also provide complementary constraints.

This letter describes a search for LFV decays of the Higgs boson with $M_H = 125$ GeV, based on proton-proton collision data recorded at $\sqrt{s} = 8$ TeV with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 19.7 fb$^{-1}$. The search is performed in three decay channels, $H \rightarrow e\tau_{\mu}$, $H \rightarrow e\tau_{h}$, and $H \rightarrow e\mu$, where τ_{μ} and τ_{h} correspond to muonic and hadronic decay channels of tau leptons, respectively. The decay channel, $H \rightarrow e\tau_{e}$, is not considered due to the large background contribution from $Z \rightarrow ee$ decays. The expected final state signatures are very similar to the SM $H \rightarrow \tau_{e}\tau_{h}$ and $H \rightarrow \tau_{e}\tau_{\mu}$ decays, studied by CMS [37,38] and ATLAS [39], but with some significant kinematic differences. The electron in the LFV $H \rightarrow e\tau$ decay is produced promptly, and tends to have a larger momentum than in the SM $H \rightarrow \tau_{e}\tau_{h}$ decay. In the $H \rightarrow e\mu$ channel, M_H can be measured with good resolution due to the absence of neutrinos.

This letter is organized as follows. After a description of the CMS detector (Section 2) and of the collision data and simulated samples used in the analysis (Section 3), the event reconstruction is described in Section 4. The event selection and the estimation of the background and its components are described separately for the two Higgs decay modes $H \rightarrow e\tau$ and $H \rightarrow e\mu$ in Sections 5 and 6. The results are then presented in Section 7.

2 The CMS detector

A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [40]. The momenta of charged
particles are measured with a silicon pixel and strip tracker that covers the pseudorapidity range $|\eta| < 2.5$, in a 3.8 T axial magnetic field. A lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadron calorimeter, both consisting of a barrel section and two endcaps, cover the pseudorapidity range $|\eta| < 3.0$. A steel and quartz-fibre Cherenkov forward detector extends the calorimetric coverage to $|\eta| < 5.0$. The outermost component of the CMS detector is the muon system, consisting of gas-ionization detectors placed in the steel flux-return yoke to identify the muons traversing the detector. The two-level CMS trigger system selects events of interest for permanent storage. The first trigger level, composed of custom hardware processors, uses information from the calorimeters and muon detectors to select events in less than 3.2 μs. The software algorithms of the high-level trigger, executed on a farm of commercial processors, reduce the event rate to less than 1 kHz using information from all detector subsystems.

3 Collision data and simulated events

The triggers for the $H \to e\tau_\mu$ and $H \to e\mu$ analyses require an electron and a muon candidate. The trigger for $H \to e\nu$ requires a single electron. More details on the trigger selection are given in Sections 5.1 and 6.1 for the $H \to e\tau$ and $H \to e\mu$ channels respectively. Simulated samples of signal and background events are produced with several event generators. The CMS detector response is modelled using Geant441. The Higgs bosons are produced in proton-proton collisions predominantly by gluon fusion (GF)42, but also by vector boson fusion (VBF)43 and in association with a W or Z boson44. The $H \to e\tau$ decay sample is produced with Pythia 8.17645 using the CTEQ6L parton distribution functions (PDF). The $H \to e\mu$ decay sample is produced with Pythia 6.42646 using the CT10 parton distribution functions47. The SM Higgs boson samples are generated using Powheg 1.048–52, with CT10 parton distribution functions, interfaced to Pythia 6.426. The MadGraph 5.1.3.3053 generator is used for Z+jets, W+jets, top anti-top quark pair production tt, and diboson production, and Powheg for single top quark production. The Powheg and MadGraph generators are interfaced to Pythia 6.426 for parton shower and hadronization. The Pythia parameters for the underlying event description are set to the Z2* tune. The Z2* tune is derived from the Z1 tune54, which uses the CTEQ5L parton distribution set, whereas Z2* adopts CTEQ6L. Due to the high luminosities attained during data-taking, many events have multiple proton-proton interactions per bunch crossing (pileup). All simulated samples are reweighted to match the pileup distribution observed in data.

4 Event reconstruction

Data were collected at an average pileup of 21 interactions per bunch crossing. The tracking system is able to separate collision vertices as close as 0.5 mm to each other along the beam direction55. The primary vertex, assumed to correspond to the hard-scattering process, is the vertex for which the sum of the squared transverse momentum p_T^2 of all the associated tracks is the largest. The pileup interactions also affect the identification of most of the physics objects, such as jets, and variables such as lepton isolation.

A particle-flow (PF) algorithm56–58 combines the information from all CMS subdetectors to identify and reconstruct the individual particles emerging from all interactions in the event: charged and neutral hadrons, photons, muons, and electrons. These particles are then required to be consistent with the primary vertex and used to reconstruct jets, hadronic τ decays, quantify the isolation of leptons and photons and reconstruct E_T^{miss}. The missing transverse energy
vector, \vec{E}_T^{miss}, is defined as the negative of the vector sum of the p_T of all identified PF objects in the event [59]. Its magnitude is referred to as E_T^{miss}. The variable $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where ϕ is the azimuthal co-ordinate, is used to measure the separation between reconstructed objects in the detector.

Electron reconstruction requires the matching of an energy cluster in the ECAL with a track in the silicon tracker [60]. Electron candidates are accepted in the range $|\eta| < 2.5$, with the exception of the region $1.44 < |\eta| < 1.56$ where service infrastructure for the detector is located. Electron identification uses a multivariate discriminant that combines observables sensitive to the amount of bremsstrahlung along the electron trajectory, the geometrical and momentum matching between the electron trajectory and associated clusters, and shower-shape observables. Additional requirements are imposed to remove electrons produced by photon conversions. The electron energy is corrected for imperfection of the reconstruction using a regression based on a boosted decision tree [61].

Muon candidates are obtained from combined fits of tracks in the tracker and muon detector seeded by track segments in the muon detector alone, including compatibility with small energy depositions in the calorimeters. Identification is based on track quality and isolation. The muon momentum is estimated with the combined fit. Any possible bias in the measured muon momentum is determined from the position of the $Z \rightarrow \mu\mu$ mass peak as a function of muon kinematic variables, and a small correction is obtained using the procedure described in Ref. [62].

Hadronically decaying τ leptons are reconstructed and identified using an algorithm [63] that selects the decay modes with one charged hadron and up to two neutral pions, or three charged hadrons. A photon from a neutral-pion decay can convert in the tracker material into an electron-positron pair, which can then radiate photons. These particles give rise to several ECAL energy deposits at the same η value but separated in ϕ. They are reconstructed as several photons by the PF algorithm. To increase the acceptance for these converted photons, the neutral pions are identified by clustering the reconstructed photons in narrow strips along the ϕ direction. The charge of τ_h candidates is reconstructed by summing the charges of all particles included in the construction of the candidate, except for the electrons contained in strips. Dedicated discriminators veto against electrons and muons.

Jets misidentified as electrons, muons or taus are suppressed by imposing isolation requirements, summing the neutral and charged particle contributions in cones of ΔR about the lepton. The energy deposited within the isolation cone is contaminated by energy from pileup and the underlying event. The effect of pileup is reduced by requiring the tracks considered in the isolation sum to be compatible with originating from the production vertex of the lepton. The contribution to the isolation from pileup and the underlying event is subtracted on an event-by-event basis. In the case of electrons, this contribution is estimated from the product of the measured energy density ρ for the event, determined using the ρ median estimator implemented in FASTJET [64], and an effective area corresponding to the isolation cone. In the case of muons and hadronically decaying τ leptons, it is estimated on a statistical basis through the modified $\Delta \beta$ correction described in Ref. [63].

Jets are reconstructed from all the particles using the anti-k_T jet clustering algorithm [65] implemented in FASTJET, with a distance parameter of $\Delta R = 0.5$. The jet energies are corrected by subtracting the contribution of particles created in pileup interactions and in the underlying event [66]. Particles from different pileup vertices can be clustered into a pileup jet, or significantly overlap a jet from the primary vertex below the selected jet p_T threshold. These jets are identified and removed [67].
5 H → eτ analysis

5.1 Event selection

The H → eτ selection begins by requiring an event recorded with a single electron trigger (\(p_T^e > 27\) GeV, \(|\eta^e| < 2.5\)). The H → e\(\tau_\mu\) channel requires a muon-electron trigger (\(p_T^\mu > 17\) GeV, \(|\eta^\mu| < 2.5\), \(p_T^e > 8\) GeV, \(|\eta^e| < 2.4\)). The triggers also apply loose identification and isolation requirements to the leptons.

A loose selection is then made for both channels. Electron, muon and hadronic tau lepton candidates are required to be isolated and to lie in the pseudorapidity ranges where they can be well reconstructed; \(|\eta^e| < 1.44\) or \(1.57 < |\eta^e| < 2.30\), \(|\eta^\mu| < 2.1\) and \(|\eta^{\tau_\mu}| < 2.3\), respectively. Leptons are also required to be compatible with the primary vertex and to be separated by \(\Delta R > 0.4\) from any jet in the event with \(p_T > 30\) GeV. The H → e\(\tau_\mu\) channel then requires an electron (\(p_T^e > 40\) GeV) and an oppositely charged muon (\(p_T^\mu > 10\) GeV) separated by \(\Delta R > 0.1\). Events in this channel with additional muons (\(p_T^\mu > 7\) GeV) or electrons (\(p_T^e > 7\) GeV) are also rejected. The H → e\(\tau_\mu\) channel requires an electron (\(p_T^e > 30\) GeV) and an oppositely charged hadronic tau lepton (\(p_T^{\tau_\mu} > 30\) GeV). Events in this channel with additional muons (\(p_T^\mu > 5\) GeV), electrons (\(p_T^e > 10\) GeV), or hadronic tau leptons (\(p_T^{\tau_\mu} > 20\) GeV) are rejected.

The events are then divided into categories within each channel according to the number of jets in the event. Jets are required to pass identification criteria, have \(p_T > 30\) GeV, and lie in the region \(|\eta^j| < 2.4\). The 0-jet and 1-jet categories contain events primarily produced by GF. The 2-jet category is defined to enrich the contribution from events produced via the VBF process.

The main observable used to discriminate between the signal and the background is the collinear mass, \(M_{\text{col}}\), which provides an estimate of \(M_H\) using the observed decay products. It is constructed using the collinear approximation based on the observation that, since \(M_H \gg M_\tau\), the \(\tau\) decay products are highly Lorentz boosted in the direction of the \(\tau\) [68]. The neutrino momenta can be approximated to have the same direction as the other visible decay products of the \(\tau\) \((\tau^{\text{vis}})\) and the component of the \(\vec{E}_{\text{miss}}\) in the direction of the visible \(\tau\) decay products is used to estimate the transverse component of the neutrino momentum \((p_T^{\nu_{\text{est}}})\).

The collinear mass can then be derived from the visible mass of the \(\tau\)-e system \((M_{\text{vis}})\) as

\[
M_{\text{col}} = M_{\text{vis}} / \sqrt{x_{\tau\nu}^{\text{vis}}},
\]

where \(x_{\tau\nu}^{\text{vis}}\) is the fraction of energy carried by the visible decay products of the \(\tau\) \((x_{\tau\nu}^{\text{vis}} = p_T^{\tau\nu} / (p_T^{\tau\nu} + p_T^{\nu_{est}}))\).

Figure 1 shows the observed \(M_{\text{col}}\) distribution and estimated backgrounds for each category and channel, after the loose selection. The simulated signal for \(B(H \rightarrow e\tau) = 100\%\) is shown.

The principal backgrounds are estimated with collision data using techniques described in Section 5.2. There is good agreement between the observed distributions and the corresponding background estimations. The agreement is similar in all of the kinematic variables that are subsequently used to suppress backgrounds. The analysis is subsequently performed blinded by using a fixed selection and checking the agreement between relevant observed and simulated distributions outside the sensitive region \(100\) GeV < \(M_{\text{col}}\) < \(150\) GeV.

Next, a set of kinematic variables is defined, and the event selection criteria are set to maximise the significance \(S / \sqrt{S + B}\), where \(S\) and \(B\) are the expected signal and background event yields in the mass window \(100\) GeV < \(M_{\text{col}}\) < \(150\) GeV. The signal event yield corresponds to the SM Higgs boson production cross section at \(M_H = 125\) GeV with \(B(H \rightarrow e\tau) = 1\%\). The selection criteria for each category and channel are given in Table 1. The variables used are:

- the lepton transverse momenta \(p_T^\ell\) with \(\ell = e, \mu, \tau_\mu\); azimuthal angles between the leptons \(\Delta \phi_{p_T^e - p_T^\mu}\); azimuthal angle between the lepton and the \(\vec{E}_{\text{miss}}\) vector \(\Delta \phi_{\vec{p}_T - \vec{E}_{\text{miss}}}\); the transverse
5.1 Event selection

Figure 1: Comparison of the observed collinear mass distributions with the background expectations after the loose selection requirements. The shaded grey bands indicate the total background uncertainty. The open histograms correspond to the expected signal distributions for $B(H \rightarrow e\tau) = 100\%$. The left column is $H \rightarrow e_{\tau} u$ and the right column is $H \rightarrow e_{\tau} h$; the upper, middle and lower rows are the 0-jet, 1-jet and 2-jet categories, respectively.
Table 1: Event selection criteria for the kinematic variables after applying loose selection requirements.

<table>
<thead>
<tr>
<th>Variable</th>
<th>H → eτμ</th>
<th>H → eτh</th>
</tr>
</thead>
<tbody>
<tr>
<td>[GeV]</td>
<td>0-jet</td>
<td>1-jet</td>
</tr>
<tr>
<td>p_T^{e}</td>
<td>>50</td>
<td>>40</td>
</tr>
<tr>
<td>$p_T^{τ}$</td>
<td>>15</td>
<td>>15</td>
</tr>
<tr>
<td>p_T^{b}</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$M_{T}^{μ}$</td>
<td><30</td>
<td><40</td>
</tr>
<tr>
<td>$M_{T}^{τ}$</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

mass $M_{T} = \sqrt{2p_T^{ℓ}E_T^{miss}(1 - \cos \Delta φ_{p_T^{ℓ} - E_T^{miss}})}$.

Events in which at least one of the jets is identified as arising from a b quark decay are vetoed using the combined secondary vertex (CSV) b-tagging algorithm [69]. To enhance the VBF contribution in the 2-jet category further requirements are applied. In the H → eτh channel, events in this category are additionally required to have two jets separated by $|\Delta η| > 2.3$ and a dijet invariant mass $M_{jj} > 400$ GeV. In the H → eτμ channel, the requirements are $|\Delta η| > 3$ and $M_{jj} > 200$ GeV.

After the full selection, a binned likelihood is used to fit the distributions of M_{col} for the signal and the background contributions. The modified-frequentist CLs method [70, 71] is used to set upper bounds on the signal strength $μ$, or determine a signal significance.

5.2 Background processes

The contributions from the dominant background processes are estimated using collision data while the less significant backgrounds are estimated using simulation. The largest backgrounds are from $Z → ττ$ decays and from W+jets and QCD multijet production. In the latter, PF objects (predominantly jets), are misidentified as leptons.

5.2.1 Z → ττ background

The $Z → ττ$ background contribution is estimated using an embedding technique [38] [72]. First, a sample of Z → μμ events is selected from collision data using the loose muon selection. The muons are then replaced with simulated τ decays reconstructed with the PF algorithm. Thus, the key features of the event topology such as jet multiplicity, instrumental sources of E_T^{miss}, and the underlying event are taken directly from collision data. Only the τ lepton decays are simulated. The normalization of the sample is obtained from simulation. The technique is validated by comparing the collinear mass distributions obtained from the Z → ττ simulation and the embedding technique applied to a simulated sample of Z → μμ events. A shift of 2% in the mass peak of the embedded sample relative to simulation is observed. This shift reflects a bias in the embedding technique, which does not take the differences between muons and taus in final-state radiation of photons into account, and is corrected for. Identification and isolation corrections obtained from the comparison are applied to the embedded sample.
5.2 Background processes

5.2.2 Misidentified lepton background

The misidentified lepton background is estimated from collision data by defining a sample with the same selection as the signal sample, but inverting the isolation requirements on one of the leptons, to enrich the contribution from W+jets and QCD multijets. The probability for PF objects to be misidentified as leptons is measured using an independent collision data set, defined below, and this probability is applied to the background enriched sample to compute the misidentified lepton background in the signal sample. The technique is shown schematically in Table 2 in which four regions are defined including the signal (I) and background (III) enriched regions and two control Regions (II & IV), defined with the same selections as Regions I & III respectively, except with leptons of the same charge.

Table 2: Definition of the samples used to estimate the misidentified lepton (ℓ) background. They are defined by the charge of the two leptons and by the isolation requirements on each. The definition of not-isolated differs between the two channels.

<table>
<thead>
<tr>
<th>Region I</th>
<th>Region II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ±1 (isolated)</td>
<td>ℓ±1 (isolated)</td>
</tr>
<tr>
<td>ℓ∓2 (isolated)</td>
<td>ℓ∓2 (isolated)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region III</th>
<th>Region IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℓ±1 (isolated)</td>
<td>ℓ±1 (isolated)</td>
</tr>
<tr>
<td>ℓ±2 (not-isolated)</td>
<td>ℓ±2 (not-isolated)</td>
</tr>
</tbody>
</table>

The misidentified electron background is negligible in the H → eτµ channel due to the high pT electron threshold. The misidentified muon background is estimated with Region I defined as the signal selection with an isolated electron and an isolated muon of opposite charge. Region III is defined as the signal selection except the muon is required not to be isolated. Small background sources of prompt leptons are subtracted using simulation. The misidentified muon background in Region I is then estimated by multiplying the event yield in Region III by a factor fµ, where fµ is the ratio of isolated to nonisolated muons. It is computed on an independent collision data sample of Z → µµ + X events, where X is an object identified as a muon, in bins of muon pT and η. In the estimation of fµ, background sources of three prompt leptons,
predominantly WZ and ZZ, are subtracted from the Z → \mu\mu + X sample using simulation. The technique is validated using like-sign lepton collision data in Regions II and IV. In Fig. 2 (left) the event yield in Region II is compared to the estimate from scaling the Region IV sample by the measured misidentification rate. The Region II sample is dominated by misidentified leptons but also includes small contributions of true leptons arising from vector boson decays, estimated with simulated samples.

In the H → eτh channel either lepton candidate can arise from a misidentified PF object, predominantly in W+jets and QCD multijet events, but also from Z → ee+jets and tt production. The misidentification rates f_\tau and f_e are defined as the fraction of loosely isolated τ_h or electron candidates that also pass a tight isolation requirement. This is measured in Z → ee + X collision data events, where X is an object identified as a τ_h or e. The misidentified τ_h contribution is estimated with Region I defined as the signal selection. Region III is the signal selection except the τ_h is required to have loose and not tight isolation. The misidentified τ_h lepton background in Region I is then estimated by multiplying the event yield in Region III by a factor f_\tau/(1 - f_\tau). The same procedure is used to estimate the misidentified electron background by defining Region I as the signal selection and Region III as the signal selection but with a loose and not tight isolated electron, and scaling by f_e/(1 - f_e). To avoid double counting, the event yield in Region III, multiplied by a factor f_e/(1 - f_e) × f_\tau/(1 - f_\tau), is subtracted from the sum of misidentified electrons and taus. The procedure is validated with the like-sign eτ samples.

Figure 2 (right) shows the collision data in Region II compared to the estimate derived from Region IV. The method assumes that the misidentification rate in Z → ee + X events is the same as in the W+jets and QCD processes. To check this assumption, the misidentification rates are also measured in a collision data control sample of jets coming from QCD processes and found to be consistent. This sample is the same Z → ee + X sample as above but with one of the electron candidates required to be not isolated and the p_T threshold lowered.

5.2.3 Other backgrounds

The leptonic decay of W bosons from tt pairs produces opposite sign dileptons and E_T^{miss}. This background is estimated using simulated tt events to compute the M_{col} distribution and a collision data control region for normalization. The control region is the 2-jet selection described in Section 5.1 including the VBF requirements, with the additional requirement that at least one of the jets is b-tagged in order to enhance the tt contribution. Other smaller backgrounds enter from SM Higgs boson production (H → ττ), WW, WZ, ZZ + jets, Wγ(*), Wγ + jets processes, and single top quark production. Each of these is estimated using simulation [38].

5.3 Systematic uncertainties

Systematic uncertainties are implemented as nuisance parameters in the signal and background fit to determine the scale of their effect. Some of these nuisance parameters affect only the background and signal normalizations, while others also affect the shape of the M_{col} distributions.

5.3.1 Normalization uncertainties

The values of the systematic uncertainties implemented as nuisance parameters in the signal and background fit are summarized in Tables 3 and 4. The uncertainties in the muon, electron and τ_h selection efficiencies (trigger, identification, and isolation) are estimated using collision data samples of Z → \mu\mu, ee, τ_μτ_h events [63, 72]. The uncertainty in the Z → ττ background yield comes from the cross section uncertainty measurement (3\% [78]) and from the uncertainty in the τ identification efficiency when applying to the embedded technique (5-10\% uncorrelated between categories). The uncertainties in the estimation of the misidentified lepton rate
5.3 Systematic uncertainties

Table 3: The systematic uncertainties in the expected event yields in percentage for the $e\tau_h$ and $e\tau_\mu$ channels. All uncertainties are treated as correlated between the categories, except when two values are quoted, in which case the number denoted by an asterisk is treated as uncorrelated between categories.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>$H \to e\tau_\mu$</th>
<th>$H \to e\tau_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-jet</td>
<td>1-jet</td>
</tr>
<tr>
<td>Muon trigger/ID/isolation</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Electron trigger/ID/isolation</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Efficiency of τ_h</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>$Z \to \tau\tau$ background</td>
<td>$3 \pm 5^*$</td>
<td>$3 \pm 5^*$</td>
</tr>
<tr>
<td>$Z \to \mu\mu$, ee background</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Misidentified leptons background</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Pileup</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>WW, WZ, ZZ, $ZZ+$jets background</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>$t\bar{t}$ background</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Single top quark background</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>b-tagging veto</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.6</td>
<td>2.6</td>
</tr>
</tbody>
</table>

come from the difference in rates measured in different collision data samples (QCD multijet and W+jets). The systematic uncertainty in the pileup modelling is evaluated by varying the total inelastic cross section by $\pm 5\%$ [74]. The uncertainties in the production cross sections estimated from simulation are also included [38].

Uncertainties on diboson and single top production correspond to the uncertainties of the respective cross section measurements [75][76]. A 10% uncertainty from the cross section measurement [77] is applied to the yield of the $t\bar{t}$ background. In the 2-jet categories an additional uncertainty (10% for $H \to e\tau_\mu$ and 33% for $H \to e\tau_h$) is considered corresponding to the statistical uncertainty of the $t\bar{t}$ background yield.

Table 4: Theoretical uncertainties in percentage for the Higgs boson production cross section for each production process and category. All uncertainties are treated as fully correlated between categories except those denoted by a negative superscript which are fully anticorrelated due to the migration of events.

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>Gluon fusion</th>
<th>Vector boson fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-jet</td>
<td>1-jet</td>
</tr>
<tr>
<td>Parton distribution function</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>Renormalization/factorization scale</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Underlying event/parton shower</td>
<td>4</td>
<td>5$^-$</td>
</tr>
</tbody>
</table>

There are several theoretical uncertainties on the Higgs boson production cross section that depend on the production mechanism and the analysis category, as reported in Table 4. These uncertainties affect both the LFV Higgs boson and the SM Higgs boson background and are fully correlated. The uncertainty in the parton distribution function is evaluated by comparing the yields in each category, that span the parameter range of three different PDF sets, CT10 [47], MSTW [78], NNPDF [79] following the PDF4LHC [80] recommendation. The uncertainty due to the renormalization and factorization scales, μ_R and μ_F, is estimated by scaling up and down by a factor of two relative to their nominal values ($\mu_R = \mu_F = M_H/2$). The uncertainty in the simulation of the underlying event and parton showers is estimated by using two different PYTHIA tunes, AUET2 and Z2*. All uncertainties are treated as fully correlated between cate-
gories except those denoted by a negative superscript which are fully anticorrelated due to the migration of events.

5.3.2 M_{col} shape uncertainties

Table 5: Systematic uncertainties in the shape of the signal and background distributions, expressed in percentage. The systematic uncertainty and its implementation are described in the text.

<table>
<thead>
<tr>
<th>Systematic Uncertainty</th>
<th>$H \to e\tau_{\mu}$</th>
<th>$H \to e\tau_{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \to \tau\tau$ bias</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>$Z \to ee$ bias</td>
<td>—</td>
<td>5</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>3–7</td>
<td>3–7</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>1–10</td>
<td>1–10</td>
</tr>
<tr>
<td>Unclustered energy scale</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>τ_{h} energy scale</td>
<td>—</td>
<td>3</td>
</tr>
</tbody>
</table>

The systematic uncertainties that lead to a change in the shape of the M_{col} distribution are summarized in Table 5. A 2% shift in the M_{col} distribution of the embedded $Z \to \tau\tau$ sample used to estimate the background is observed relative to simulation. It occurs only in the $H \to e\tau_{\mu}$ channel as the effects of bremsstrahlung from the muon are neglected in the simulation. The M_{col} distribution is corrected by $2 \pm 2\%$ for this effect. There is a systematic uncertainty of 5% in $Z \to ee$ background in the $H \to e\tau_{h}$ channel, due to the mismeasured energy of the electron reconstructed as a τ_{h}. It causes a shift in the M_{col} distribution, estimated by comparing collision data with simulation in a control region of $Z \to ee$ events in which one of the two electrons that form the Z peak is also identified as a τ_{h} [63]. Corrections are applied for the jet energy scale and resolution [66]. They are determined with dijet and $\gamma/Z$$+\text{jets}$ collision data and the most significant uncertainty arises from the photon energy scale. Other uncertainties such as jet fragmentation modelling, single pion response, and uncertainties in the pileup corrections are also included. The jet energy scale uncertainties (3–7%) are applied as a function of p_T and η, including all correlations, to all jets in the event, propagated to the E_T^{miss}, and the resultant M_{col} distribution is used in the fit. There is also an additional uncertainty to account for the unclustered energy scale uncertainty. The unclustered energy comes from jets below 10 GeV and PF candidates not within jets. It is also propagated to E_T^{miss}. These effects cause a shift of the M_{col} distribution. The uncertainty in the jet energy resolution is used to smear the jets as a function of p_T and η and the recomputed M_{col} distribution is used in the fit. A 3% uncertainty in the τ_{h} energy scale is estimated by comparing $Z \to \tau\tau$ events in collision data and simulation. Potential uncertainties in the shape of the misidentified lepton backgrounds are also considered. In the $H \to e\tau_{\mu}$ channel the misidentified lepton rates are applied in bins of p_T and η. In the $H \to e\tau_{h}$ channel, the τ_{h} misidentification rate is found to be approximately independent of p_T but to depend on η. These rates are all varied by one standard deviation and the differences in the shapes are used as nuisance parameters in the fit. Finally, the distributions used in the fit have statistical uncertainties in each mass bin which is included as an uncertainty that is uncorrelated between the bins.

6 $H \to e\mu$ analysis

6.1 Event selection

To select $H \to e\mu$ events, the trigger requirement is an electron and a muon with p_T greater than 17 and 8 GeV respectively. To enhance the signal sensitivity the event sample is divided
into nine different categories according to the region of detection of the leptons and the number of jets, and a further two categories enriched in vector boson fusion production. The resolution of the reconstructed mass of the electron muon system, $M_{e\mu}$, depends on whether the leptons are detected in the barrel ($|\eta_{e}| < 1.48$, $|\eta_{\mu}| < 0.80$) or endcap (1.57 < $|\eta_{e}| < 2.50, 0.8 < |\eta_{\mu}| < 2.4$), while the composition and rate of backgrounds varies with the number of jets. The definition of the categories is shown in Table 6. The two leptons are required to be isolated in all categories. Categories 0–8, which are selected according to the region of detection of the lepton and number of jets, are mutually exclusive with jets required to have $p_T > 20$ GeV. To suppress backgrounds with significant E_T^{miss}, such as WW+jets, E_T^{miss} is required to be less than 20, 25 or 30 GeV, depending on the category. Jets arising from b quark decays are vetoed using the CSV discriminant to significantly reduce the $t\bar{t}$ background. In the VBF categories, the two highest p_T jets are required to have $|\eta| < 4.7$ and to be separated by $|\eta_{\ell_1} - \eta_{\ell_2}| > 3.0$. In addition the jets are required to have $|\eta| = |\eta_{j_1, j_2} - \eta_{\ell_{1,2}}| < 2.5$, where $\ell = e$ or μ, $\eta_{\ell_{1,2}}$ denotes the pseudorapidity of the dilepton system and $j_{1,2}$ are the two jets. The Δ between the dijet system and the dilepton system is required to be greater than 2.6 rad. The VBF tight category selection further requires that both jets have $p_T > 30$ GeV and the dijet invariant mass be $M_{j_{1,2}} > 500$ GeV, while the VBF loose category relaxes the second jet requirement to $p_T > 20$ GeV with $M_{j_{1,2}} > 250$ GeV and is exclusive to the VBF tight category. The leptons in both VBF categories can be in either the barrel or endcap. To avoid an event appearing in more than one category the VBF assignment is made first. Events with more than two jets are not considered. The selection efficiency, summed over all categories, is 24% (22%) for the GF (VBF) production mechanism.

Table 6: The $H \rightarrow e\mu$ event selection criteria and background model for each event category. The categories are primarily defined according to whether the leptons are detected in the barrel (ℓ_B) or endcap (ℓ_{EC}), and the number of jets (N-jets). Requirements are also made on p_T, E_T^{miss} and a veto on jets arising from a b-quark decay. The background model function and order of that function are also given.

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
<th>N-jets</th>
<th>p_T [GeV]</th>
<th>E_T^{miss} [GeV]</th>
<th>Background model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>p_T</td>
<td>E_T^{miss}</td>
<td>Function</td>
</tr>
<tr>
<td>0</td>
<td>$\ell_B\mu_B$</td>
<td>0</td>
<td>>25</td>
<td><30</td>
<td>polynomial</td>
</tr>
<tr>
<td>1</td>
<td>$\ell_B\mu_B$</td>
<td>1</td>
<td>>22</td>
<td><30</td>
<td>polynomial</td>
</tr>
<tr>
<td>2</td>
<td>$\ell_B\mu_B$</td>
<td>2</td>
<td>>25</td>
<td><25</td>
<td>power law</td>
</tr>
<tr>
<td>3</td>
<td>$\ell_B\mu_{EC}$</td>
<td>0</td>
<td>>20</td>
<td><30</td>
<td>polynomial</td>
</tr>
<tr>
<td>4</td>
<td>$\ell_B\mu_{EC}$</td>
<td>1</td>
<td>>22</td>
<td><20</td>
<td>exponential</td>
</tr>
<tr>
<td>5</td>
<td>$\ell_B\mu_{EC}$</td>
<td>2</td>
<td>>20</td>
<td><30</td>
<td>exponential</td>
</tr>
<tr>
<td>6</td>
<td>$\ell_{EC}\mu_B$ or $\ell_{EC}\mu_{EC}$</td>
<td>0</td>
<td>>20</td>
<td><30</td>
<td>polynomial</td>
</tr>
<tr>
<td>7</td>
<td>$\ell_{EC}\mu_B$ or $\ell_{EC}\mu_{EC}$</td>
<td>1</td>
<td>>22</td>
<td><20</td>
<td>power law</td>
</tr>
<tr>
<td>8</td>
<td>$\ell_{EC}\mu_B$ or $\ell_{EC}\mu_{EC}$</td>
<td>2</td>
<td>>20</td>
<td><30</td>
<td>polynomial</td>
</tr>
<tr>
<td>9</td>
<td>VBF Tight</td>
<td>2</td>
<td>>22</td>
<td><30</td>
<td>exponential</td>
</tr>
<tr>
<td>10</td>
<td>VBF Loose</td>
<td>2</td>
<td>>22</td>
<td><25</td>
<td>exponential</td>
</tr>
</tbody>
</table>

6.2 Signal and background modelling

The signal model is the sum of two Gaussian functions, determined from simulation for each category. The reconstructed mass resolutions depend on whether the leptons are in the barrel (B) or endcap (EC) calorimeter and are: 2.0–2.1 GeV for $\ell_B\mu_B$, 2.4–2.5 GeV for $\ell_B\mu_{EC}$, 3.2–3.6 GeV for $\ell_{EC}\mu_B$ or $\ell_{EC}\mu_{EC}$ categories and 2.4 (4.0) GeV for the VBF tight (loose) categories. The background, modelled as either a polynomial function, a sum of exponential functions, or a sum of power law functions is given in Table 6 for each category. The procedure to determine the background
function follows the method described in \cite{3}. It is designed to choose a model with sufficient parameters to accurately describe the background while ensuring that the signal shape is not absorbed into the background function. The background model for each category is chosen independently using this procedure.

In a first step, reference functions are selected for each type of function (polynomial, sum of exponentials, sum of power laws). The order of the function is chosen such that the next higher order does not give a significantly better fit result when fit to the observed \(M_{\text{e}\mu}\) distribution in the range \(110 \text{ GeV} < M_{\text{e}\mu} < 160 \text{ GeV}\).

In a second step, an ensemble of distributions is drawn from each of the three reference background models combined with a signal contribution corresponding to \(B(H \rightarrow e\mu) = 0.1\%\), and fitted for signal and background with each of the three classes of functions of different orders.

On average, the signal yield extracted from the distributions using a signal plus background fit will differ from the injected signal due to the imperfect modelling of the background. The bias is defined as the median deviation of the fit signal event yield from the generated number of signal events. The possible combinations of generated distributions with the fit signal plus background models are then reduced by requiring the bias to be less than a threshold which results in less than 1% uncertainty in the fit signal event yield. The combination in which the fit model has the least parameters is then selected and the fit function is used as the background model for the collision data. If there is more than one model with the same minimal number of parameters then the one with the least bias is selected.

6.3 Systematic uncertainties

The systematic uncertainties are summarized in Table\ref{tab:systematics}. The background is fit to the observed mass distribution with a negligible systematic uncertainty of <1% in the signal yield arising from the choice of background model as described above. Correction factors are applied to the lepton trigger, isolation, and identification efficiencies for each simulated signal sample to adjust for discrepancies with the collision data. The uncertainty in the signal yield from the lepton isolation and identification corrections is 2.0% and is estimated with the “tag-and-probe” method \cite{72} applied to a collision data sample of Z bosons decaying to lepton pairs\cite{60,62}. The uncertainties in the lepton energy scale and the dilepton mass resolution are taken from the \(H \rightarrow ZZ\) analysis\cite{61}. The systematic uncertainty in the pileup modelling is evaluated by varying the total inelastic cross section by \(\pm 5\%\) \cite{74}. It varies according to the production process and category between 0.7% and 2.3%. There are systematic uncertainties in the efficiency of the b quark jet veto that also vary with production process and category from 0.05% to 0.7%. The uncertainty on the integrated luminosity is 2.6% \cite{81}. The effects of systematic uncertainties in the jet energy scale and resolution, and the uncertainties in PDF’s on the selection efficiency are estimated as described in Section 5.3.2 for the \(H \rightarrow e\tau\) channel. The largest values of these systematic uncertainties occur due to the migration of events to, or from, a category with low statistics.

The theoretical uncertainties on the Higgs boson production cross section are also described in Section 5.3.2.
Table 7: Systematic uncertainties in percentage on the expected yield for $H \to e\mu$. Ranges are given where the uncertainty varies with production process and category. All uncertainties are treated as correlated between categories.

Experimental uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background model</td>
<td><1</td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>1.0</td>
</tr>
<tr>
<td>Lepton identification</td>
<td>2.0</td>
</tr>
<tr>
<td>Lepton energy scale</td>
<td>1.0</td>
</tr>
<tr>
<td>Dilepton mass resolution</td>
<td>5.0</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.7–2.3</td>
</tr>
<tr>
<td>b quark jet veto efficiency</td>
<td>0.05–0.70</td>
</tr>
<tr>
<td>Luminosity</td>
<td>2.6</td>
</tr>
<tr>
<td>Jet energy scale (inclusive categories)</td>
<td>0.6–22</td>
</tr>
<tr>
<td>Jet energy scale (VBF categories)</td>
<td>0.1–78</td>
</tr>
<tr>
<td>Jet energy resolution (inclusive categories)</td>
<td>2.8–12</td>
</tr>
<tr>
<td>Jet energy resolution (VBF categories)</td>
<td>0.0–49</td>
</tr>
<tr>
<td>Acceptance (PDF variations)</td>
<td>0.8–5.1</td>
</tr>
</tbody>
</table>

Theoretical uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF normalization/factorization scale</td>
<td>$+7.2$</td>
</tr>
<tr>
<td></td>
<td>-7.8</td>
</tr>
<tr>
<td>GF parton distribution function</td>
<td>$+7.5$</td>
</tr>
<tr>
<td></td>
<td>-6.9</td>
</tr>
<tr>
<td>VBF normalization/factorization scale</td>
<td>± 0.2</td>
</tr>
<tr>
<td>VBF parton distribution function</td>
<td>$+2.6$</td>
</tr>
<tr>
<td></td>
<td>-2.8</td>
</tr>
</tbody>
</table>
Figure 3: Comparison of the observed collinear mass distributions with the background expectations after the fit. The simulated distributions for the signal are shown for the branching fraction $B(H \rightarrow e\tau) = 0.69\%$. The left column is $H \rightarrow e\tau$ and the right column is $H \rightarrow e\mu$; the upper, middle and lower rows are the 0-jet, 1-jet and 2-jet categories, respectively.
7 Results

7.1 $H \to e\tau$

The distributions of the fitted signal and background contributions, after the full selection, are shown in Fig. 3 and the corresponding event yields in the mass range $100\text{ GeV} < M_{\text{col}} < 150\text{ GeV}$ are given in Table 8. There is no evidence of a signal. Table 9 shows the expected and observed 95% CL mean upper limits on $B(H \to e\tau)$ which are summarized in Fig. 4 for the individual categories in the $e\tau_\mu$ and $e\tau_h$ channels and for the combination. The combined observed (expected) upper limit on $B(H \to e\tau)$ is 0.69 (0.75)% at 95% CL. [70, 71, 82].

Table 8: Event yields in the signal region, $100\text{ GeV} < M_{\text{col}} < 150\text{ GeV}$, after fitting for signal and background for the $H \to e\tau$ channel, normalized to an integrated luminosity of 19.7 fb^{-1}.

<table>
<thead>
<tr>
<th>Jet category:</th>
<th>$H \to e\tau_\mu$</th>
<th>$H \to e\tau_h$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misidentified leptons</td>
<td>85.2±5.9</td>
<td>38.1±3.9</td>
</tr>
<tr>
<td>$Z \to ee, \mu\mu$</td>
<td>2.3±0.6</td>
<td>5.4±0.5</td>
</tr>
<tr>
<td>$Z \to \tau\tau$</td>
<td>84.7±2.1</td>
<td>113.3±4.2</td>
</tr>
<tr>
<td>$t\bar{t}, t\bar{t}, \bar{t}$</td>
<td>13.8±0.3</td>
<td>69.4±2.3</td>
</tr>
<tr>
<td>ZZ, WZ, WW</td>
<td>83.0±2.7</td>
<td>51.7±2.0</td>
</tr>
<tr>
<td>$W\gamma$</td>
<td>2.2±1.0</td>
<td>1.2±0.6</td>
</tr>
<tr>
<td>SM H background</td>
<td>2.3±0.3</td>
<td>3.6±0.4</td>
</tr>
<tr>
<td>Sum of background</td>
<td>273.5±6.1</td>
<td>282.0±6.0</td>
</tr>
<tr>
<td>Observed</td>
<td>286</td>
<td>268</td>
</tr>
<tr>
<td>LFV H signal</td>
<td>23.1±1.6</td>
<td>16.0±1.2</td>
</tr>
</tbody>
</table>

Table 9: The expected and observed upper limits at 95% CL, and best fit values for the branching fractions $B(H \to e\tau)$ for different jet categories and analysis channels. The asymmetric one standard-deviation uncertainties around the expected limits are shown in parentheses.

<table>
<thead>
<tr>
<th>Jet category:</th>
<th>Expected limits at 95% CL (%)</th>
<th>Observed limits at 95% CL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e\tau_\mu$</td>
<td>$<-1.63^{+0.66}_{-0.44}$</td>
<td>$<-1.54^{+0.71}_{-0.47}$</td>
</tr>
<tr>
<td>$e\tau_h$</td>
<td>$<-2.71^{+1.05}_{-0.75}$</td>
<td>$<-2.76^{+1.07}_{-0.77}$</td>
</tr>
<tr>
<td>$e\tau$</td>
<td>$<-0.75^{+0.32}_{-0.22}$</td>
<td>$<-0.75^{+0.32}_{-0.22}$</td>
</tr>
</tbody>
</table>

7.2 $H \to e\mu$

The $M_{e\mu}$ distribution of the collision data sample, after all selection criteria, for all categories combined is shown in Fig. 5. Also shown are the combinations of the inclusive jet-tagged categories (0–8) and the VBF categories (9–10). The expected yields of signal ($B(H \to e\mu) = 0.1\%$) and background events for $124\text{ GeV} < M_{e\mu} < 126\text{ GeV}$, after all the selection criteria, are given in Table 10 and compared to the collision data event yield. The contributions to the
Results

Figure 4: 95% CL upper limits by category for the LFV decays for $M_H = 125$ GeV. Left: $H \rightarrow e\tau$. Right: $H \rightarrow e\mu$ for categories combined by number of jets, the VBF categories combined, and all categories combined.

The dominant background contributions are from Drell–Yan production of τ lepton pairs and electroweak diboson production. There is no signal observed. An exclusion limit on $B(H \rightarrow e\mu)$ with $M_H = 125$ GeV is derived using the CL$_s$ asymptotic model [83]. It is shown in Fig. 4 for the inclusive categories grouped by number of jets, the VBF categories combined, and all categories combined. The expected limit is $B(H \rightarrow e\mu) < 0.048\%$ at 95% CL and the observed limit is $B(H \rightarrow e\mu) < 0.035\%$ at 95% CL.
7.3 Limits on lepton flavour violating couplings

The constraints on $B(H \to e\mu)$ and $B(H \to e\tau)$ can be interpreted in terms of the LFV Yukawa couplings $|Y_{e\tau}|$, $|Y_{\tau e}|$ and $|Y_{e\mu}|$, $|Y_{\mu e}|$ respectively. The LFV decays $H \to e\tau$, $e\mu$ arise at tree level in the Lagrangian, L_V, from the flavour-violating Yukawa interactions, $Y_{\ell\ell'}$, where ℓ^a, ℓ^b denote the leptons e, μ, τ, and $\ell^a \neq \ell^b$. The subscripts L and R refer to the left and right handed components of the leptons, respectively.

$$L_V \equiv -Y_{e\mu}e_LH - Y_{\mu\mu}H - Y_{e\tau}\tau_LH - Y_{\tau\tau}\tau_LH - Y_{e\mu}\mu_LH - Y_{\mu\mu}\mu_LH$$

The decay width $\Gamma(H \to \ell^a \ell^b)$ in terms of the Yukawa couplings is given by:

$$\Gamma(H \to \ell^a \ell^b) = \frac{M_H}{8\pi} (|Y_{\ell^a\ell^b}|^2 + |Y_{\ell^b\ell^a}|^2),$$

and the branching fraction by:

$$B(H \to \ell^a \ell^b) = \frac{\Gamma(H \to \ell^a \ell^b)}{\Gamma(H \to \ell^a \ell^b) + \Gamma_{SM}}.$$

The SM Higgs boson decay width is $\Gamma_{SM} = 4.1$ MeV for a 125 GeV Higgs boson. The 95% CL constraints on the Yukawa couplings, derived from $B(H \to e\tau) < 0.69\%$ and $B(H \to e\mu) <$
0.035% using the expression for the branching fraction above are:
\[\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.4 \times 10^{-3}, \quad \sqrt{|Y_{e\mu}|^2 + |Y_{\mu e}|^2} < 5.4 \times 10^{-4}. \]

Figures 8 compare these results to the constraints from previous indirect measurements. The absence of \(\mu \rightarrow e\gamma \) decays implies a limit of \(\sqrt{|Y_{e\mu}|^2 + |Y_{\mu e}|^2} < 3.6 \times 10^{-6} \) assuming that flavour changing neutral currents are dominated by the Higgs boson contributions. However, this limit can be degraded by the cancellation of lepton flavour violating effects from other new physics. The direct search for \(H \rightarrow e\mu \) decays presented here is therefore complementary to indirect limits obtained from searches for rare decays at lower energies.

8 Summary

A search for lepton flavour violating decays of the Higgs boson to \(e\tau \) or \(e\mu \), based on the full \(\sqrt{s} = 8 \, \text{TeV} \) collision data set collected by the CMS experiment in 2012, is presented. No evidence is found for such decays. Observed upper limits of \(\mathcal{B}(H \rightarrow e\tau) < 0.69\%\) and \(\mathcal{B}(H \rightarrow e\mu) < 0.035\% \) at 95% CL are set for \(M_H = 125 \, \text{GeV} \). These limits are used to constrain the \(Y_{e\tau} \) and \(Y_{e\mu} \) Yukawa couplings as follows: \(\sqrt{|Y_{e\tau}|^2 + |Y_{\tau e}|^2} < 2.4 \times 10^{-3} \) and \(\sqrt{|Y_{e\mu}|^2 + |Y_{\mu e}|^2} < 5.4 \times 10^{-4} \) at 95% CL.
Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the OPUS programme contract 2014/13/B/ST2/02543 and contract Sonata-bis DEC-2012/07/E/ST2/01406 of the National Science Center (Poland); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; the Programa Clarín-COFUND del Principado de Asturias; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); and the Welch Foundation, contract C-1845.

References

[57] CMS Collaboration, “Particle flow reconstruction of 0.9 TeV and 2.36 TeV collision events in CMS”, CMS Physics Analysis Note CMS-PAS-PFT-10-001, 2010.

\texttt{arXiv:1101.0538}

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, E. Asilar, T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö, M. Flechl, M. Friedl, R. Frühwirth1, V.M. Gheite, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, V. Knünz, A. König, M. Krammer1, I. Krätschmer, D. Liko, T. Matsushita, I. Mikulec, D. Rahbaran, H. Rohringer, J. Schieck1, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

Vrije Universiteit Brussel, Brussel, Belgium

Université Libre de Bruxelles, Bruxelles, Belgium

Ghent University, Ghent, Belgium

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

Université de Mons, Mons, Belgium
N. Beliy, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
S. Ahujaa, C.A. Bernardesb, A. De Souza Santosb, S. Dograa, T.R. Fernandez Perez Tomeia,
E.M. Gregoresb, P.G. Mercadanteb, C.S. Moona,8, S.F. Novaesa, Sandra S. Padulaa, D. Romero Abad, J.C. Ruiz Vargas

\textbf{Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria}
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

\textbf{University of Sofia, Sofia, Bulgaria}
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

\textbf{Institute of High Energy Physics, Beijing, China}

\textbf{State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China}
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu

\textbf{Universidad de Los Andes, Bogota, Colombia}
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

\textbf{University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia}
N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano

\textbf{University of Split, Faculty of Science, Split, Croatia}
Z. Antunovic, M. Kovac

\textbf{Institute Rudjer Boskovic, Zagreb, Croatia}
V. Brigljevic, K. Kadija, J. Luetic, S. Micanovic, L. Sudic

\textbf{University of Cyprus, Nicosia, Cyprus}

\textbf{Charles University, Prague, Czech Republic}
M. Bodlak, M. Finger10, M. Finger Jr.10

\textbf{Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt}
A.A. Abdelalim11,12, A. Awad, A. Mahrous11, A. Radi13,14

\textbf{National Institute of Chemical Physics and Biophysics, Tallinn, Estonia}
B. Calpas, M. Kadastik, M. Murumaa, M. Raidal, A. Tiko, C. Veelken

\textbf{Department of Physics, University of Helsinki, Helsinki, Finland}
P. Eerola, J. Peikkanen, M. Voutilainen

\textbf{Helsinki Institute of Physics, Helsinki, Finland}

\textbf{Lappeenranta University of Technology, Lappeenranta, Finland}
J. Talvitie, T. Tuuva

\textbf{IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France}
University of Hamburg, Hamburg, Germany

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi

University of Ioánnina, Ioánnina, Greece

Wigner Research Centre for Physics, Budapest, Hungary

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, Z. Szillasi

University of Debrecen, Debrecen, Hungary
M. Bartók, A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India

Panjab University, Chandigarh, India

University of Delhi, Delhi, India
Ashok Kumar, A. Bhardwaj, B.C. Choudhary, R.B. Garg, A. Kumar, S. Malhotra, M. Naimuddin, N. Nishu, K. Ranjan, R. Sharma, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, R. Chudasama, D. Dutta, V. Jha, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India

Indian Institute of Science Education and Research (IISER), Pune, India
S. Chauhan, S. Dube, A. Kapoor, K. Kothekar, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

INFN Sezione di Catania, Università di Catania, Catania, Italy
G. Cappello, M. Chiorboli, S. Costa, A. Di Mattia, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, V. Gori, P. Lenzi, M. Meschini, S. Paololetti, G. Sguazzoni, L. Viliani

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo, F. Primavera

INFN Sezione di Genova, Università di Genova, Genova, Italy
V. Calvelli, F. Ferro, M. Lo Vetere, M.R. Monge, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
L. Alunni Solestizzi, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Roma, Università di Roma, Roma, Italy

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, A. Zanetti

Kangwon National University, Chunchon, Korea
A. Kropivnitskaya, S.K. Nam

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
J.A. Brochero Cifuentes, H. Kim, T.J. Kim
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
S. Song

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea
Y. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
V. Dudenas, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, P.G. Ferreira Parracho,

Joint Institute for Nuclear Research, Dubna, Russia

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, E. Vlasov, A. Zhokin

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
A. Bylinkin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Baskakov, A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, I. Myagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, P. Cirkovic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran
Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gürmez, M. Kaya, O. Kaya, E.A. Yetkin, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
A. Cakir, K. Cankocak, S. Sen, F.I. Vardarlı

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom

Rutherford Appleton Laboratory, Didcot, United Kingdom

Imperial College, London, United Kingdom

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
A. Borzou, K. Call, J. Dittmann, K. Hatakeyama, H. Liu, N. Pastika

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
Brown University, Providence, USA

University of California, Davis, Davis, USA

University of California, Los Angeles, USA

University of California, Riverside, Riverside, USA

University of California, Santa Barbara, Santa Barbara, USA

California Institute of Technology, Pasadena, USA

Carnegie Mellon University, Pittsburgh, USA

University of Colorado Boulder, Boulder, USA

Cornell University, Ithaca, USA

Fermi National Accelerator Laboratory, Batavia, USA

University of Florida, Gainesville, USA

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA

Florida Institute of Technology, Melbourne, USA

University of Illinois at Chicago (UIC), Chicago, USA

The University of Iowa, Iowa City, USA

Johns Hopkins University, Baltimore, USA

The University of Kansas, Lawrence, USA

Kansas State University, Manhattan, USA
A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, A. Mohammadi, L.K. Saini, N. Skhirtladze, S. Toda

Lawrence Livermore National Laboratory, Livermore, USA
D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA

Massachusetts Institute of Technology, Cambridge, USA
Rice University, Houston, USA

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, G. Petrillo, P. Tan, M. Verzetti

Rutgers, The State University of New Jersey, Piscataway, USA

University of Tennessee, Knoxville, USA
M. Foerster, G. Riley, K. Rose, S. Spanier

Texas A&M University, College Station, USA

Texas Tech University, Lubbock, USA

Vanderbilt University, Nashville, USA

University of Virginia, Charlottesville, USA

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamoge Don, P. Lamichhane, J. Sturdy

University of Wisconsin - Madison, Madison, WI, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
4: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
5: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
6: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
7: Also at Universidade Estadual de Campinas, Campinas, Brazil
55: Also at Izmir Institute of Technology, Izmir, Turkey
56: Also at Marmara University, Istanbul, Turkey
57: Also at Kafkas University, Kars, Turkey
58: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
59: Also at Yildiz Technical University, Istanbul, Turkey
60: Also at Hacettepe University, Ankara, Turkey
61: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
62: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
63: Also at Instituto de Astrofísica de Canarias, La Laguna, Spain
64: Also at Utah Valley University, Orem, USA
65: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
66: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
67: Also at Argonne National Laboratory, Argonne, USA
68: Also at Erzincan University, Erzincan, Turkey
69: Also at Texas A&M University at Qatar, Doha, Qatar
70: Also at Kyungpook National University, Daegu, Korea