High-mass Higgs searches at ATLAS and CMS

Scott Snyder
On behalf of the ATLAS and CMS Collaborations

Brookhaven National Laboratory, Upton, NY, USA

Jul 11, 2016
ICNFP, Crete

- Introduction
- Higgs → VV
- Higgs → Higgs
- Higgs → fermions
- Higgs → invisible
- Summary
Introduction

- Observed Higgs boson very consistent with SM expectations.
- Suspect EW sector of SM may not be complete:
 - Naturalness, dark matter, etc.
- Search for a heavier Higgs-like particle.
- LHC started Run 2 at $\sqrt{s} = 13$ TeV.
- Accumulated $\sim 3 \text{ fb}^{-1}$ of usable data in 2015.
Some models with heavy Higgs bosons

- Most studied are two simple extensions to the SM:
 - Electroweak singlet (EWS)
 - New scalar singlet s that mixes with h.
 - 2-Higgs-Doublet Model (2HDM)
 - Extra Higgs doublet.
 - Physical particles h, H, A, H^\pm.
 - Parameters:
 - Masses: m_h, m_H, m_A, m_{H^\pm}.
 - VEV ratio of the two doublets: $\tan \beta$.
 - Mixing angle between h, H: α.
 - Potential parameter mixing the two doublets: m_{12}^2.
 - Different ways to couple doublets with other particles; most studied:
 - Type-I: All quarks couple to only one doublet.
 - Type-II: Up-type quarks couple to one doublet, down-type quarks to the other.
 - MSSM is a subset of 2HDM.
 - Numerous MSSM benchmark models:
 - $h\text{MSSM}, m_h^{\text{mod}+}$, etc.

Denote the 125 GeV resonance as ‘h’; H is a heavier resonance.
Searches covered

All results from 13 TeV 2015 data unless otherwise specified.

Higgs → VV
- $H \rightarrow ZZ \rightarrow 4\ell$
- $H \rightarrow ZZ \rightarrow \ell\ell\nu\nu$
- $H \rightarrow ZZ \rightarrow \ell\ell qq$

Higgs → Higgs
- $H \rightarrow ZA \rightarrow \ell\ell bb$
- $A \rightarrow Zh \rightarrow \ell\ell bb/\nu\nu bb$

Higgs → fermions
- $H^+ \rightarrow tb \ [8 \text{ TeV}]$
- $H^+ \rightarrow \tau\nu$
- $H/A \rightarrow \tau\tau$

Invisible Higgs decays
- $ZH \rightarrow \ell\ell + \text{(invisible)}$
- VBF $H \rightarrow \text{(invisible)}$

$H \rightarrow \gamma\gamma$ covered elsewhere.
Higgs \rightarrow VV

- $H \rightarrow ZZ \rightarrow 4\ell$
- $H \rightarrow ZZ \rightarrow \ell\ell\nu\nu$
- $H \rightarrow ZZ \rightarrow \ell\ell qq$

Covered in Garabed's talk

- Merged channels:
 - $H \rightarrow VV \rightarrow \nu\nu qq, \ell\nu qq, \ell\ell qq, qqqq$
- $H \rightarrow Z\gamma$
$H \rightarrow ZZ \rightarrow 4\ell$

Based on $m_h = 125$ GeV analysis.
2 same-flavor, OS ℓ pairs.
One $40 < m_{\ell\ell} < 120$ GeV; other $12 < m_{\ell\ell} < 120$ GeV.

BG mostly ZZ, est. from MC

Exclusions for several resonance widths.
Also $\tan \beta$ limits for type-I,II 2HDM.
$H \rightarrow ZZ \rightarrow \ell\ell\nu\nu$

Require $Z \rightarrow \ell\ell$, large E_T^{miss}, no b-tags.
Add’l requirements on $\Delta\phi(Z, E_T^{miss})$ and p_T^Z.
Discriminating variable: $m_T(\ell\ell, E_T^{miss})$.

VV: MC
WZ: MC normalized to data
$Z + jets$: data-driven
$H \rightarrow ZZ \rightarrow \ell\ell qq$

Merged analysis

$Z \rightarrow \ell\ell$; small E_T^{miss}

large-R Z-tagged jet $w/ p_T > 200$ GeV

$p_T(\ell\ell) > 0.3m_{\ell\ell}$

Resolved analysis

$Z \rightarrow \ell\ell$; small E_T^{miss}

$2j$ w/ $70 < m_{jj} < 105$ GeV

$\sqrt{p_T^2(\ell\ell) + p_T^2(jj)} > 0.5m_{\ell\ell jj}$

Tagged ($2b$) and untagged ($< 2b$) categories.

Dominant BG: $Z +$ jets, also $t\bar{t}$.

Merged

Resolved

Combined
Higgs → Higgs

Covered in Xiaohu’s and Andrey’s talks
- $H \rightarrow hh \rightarrow bb\tau\tau$
- $H \rightarrow hh \rightarrow bb\gamma\gamma$
- $H \rightarrow hh \rightarrow \ell\nu\ell\nu bb$
- $H \rightarrow hh \rightarrow bbbb$

Covered here: analyses involving CP-odd scalar A
- $H \rightarrow ZA \rightarrow \ell\ell bb$
- $A \rightarrow Zh \rightarrow \ell\ell bb/\nu\nu bb$
$H \rightarrow ZA \rightarrow \ell\ell bb$

Selection

$Z \rightarrow \ell\ell$, 2 b-tags

For different hypothesized m_A/m_H pairs: rectangular window in $m_{bb}/m_{\ell\ell bb}$ plane.

Backgrounds

Normalize backgrounds by fitting $m_{\ell\ell}$ outside signal region.

Limits for $m_H = 500$ GeV; also derived for 300 GeV and 800 GeV.

CMS Preliminary

1σ, 2σ and 3σ uncertainties are shown.

Observed s_{CL}

$2.3 \text{ fb}^{-1} (13 \text{ TeV})$
$A \rightarrow Zh \rightarrow \ell\ell bb/\nu\nu bb$

Selection

Either no ℓ and E_T^{miss}

or $Z \rightarrow \ell\ell$ and small E_T^{miss}.

bb either from two small-R jets ($110 < m_{jj} < 140 \text{ GeV}$) if $p_T^{Z} < 500 \text{ GeV}$ or a large-R jet ($75 < m_{J} < 145 \text{ GeV}$) otherwise.

Either 1 or 2 b-tags.

Final discriminant: $m(Zh)/m_T(Zh)$.

Backgrounds

Shapes from MC. $Z + \text{jets}$, $t\bar{t}$ control regions included in final fit to constrain dominant backgrounds.

Scott Snyder (BNL)

High-mass Higgs searches at ATLAS and CMS

ICNFP Jul 11, 2016
A → Zh → ℓℓbb/ννbb (2)

Production via ggf

MSSM interpretations ($M_A = 600$ GeV)

Type-I 2HDM

Type-II 2HDM
Higgs → fermions

Charged Higgs production and decay

For $m_{H^+} > m_t$, production is dominantly $pp \rightarrow t(b)H^+$.

- $H^+ \rightarrow tb$
- $H^+ \rightarrow \tau\nu$

Decay is dominantly $H^+ \rightarrow tb$.

But $H^+ \rightarrow \tau\nu$ can be significant for high $\tan\beta$.

Also

$H \rightarrow \tau\tau$
$H^+ \to tb, \tau\nu$ [8 TeV]

Produced via $pp \to t(b)H^\pm$. Hadronic channel also sensitive to $t\bar{t} \to bH^\pm bH^\pm, t\bar{t} \to bH^\pm bW$.

$\tau_{\text{had}} + \text{jets (}\tau\nu\text{)}$: $\tau_{\text{had}}, \geq 3j, \geq 1b$, no ℓ, angular separations. Extract limit from $m_T(\tau_{\text{had}}, E_T^{\text{miss}})$.
BG: $V + j, VV, t \to \tau$: Replace μ in $\mu + j$ with sim. τ multijet: from data via fake rate; $t\bar{t}$ w/fake τ from MC

$\ell \ell (tb/\tau\nu)$: $2\ell, 2j, E_T^{\text{miss}}, \geq 2b$. Extract limit from n_{btag}.
BG: From MC.

$\mu \tau_{\text{had}} (tb/\tau\nu)$: As above with $\mu \tau_{\text{had}}$ instead of 2ℓ and $\geq 1b$.
BG: From MC, with fake-factor for misidentified τ_{had}.

$\ell + \text{jets (}tb\text{)}$: $\ell, E_T^{\text{miss}}, 2j, \geq 1b$. Extract limit from H_T, binned in b-tag multiplicity.
BG: Shapes from MC, normalizations float in fit.

ATLAS tb analysis: [arXiv:1512.03704]
$H^+ \rightarrow \tau \nu$

Final state: $(t \rightarrow jjb)b\tau_{\text{had}}\nu$

$\geq 3j, \geq 1b, \tau_{\text{had}}, \ell$ veto,

$E_T^{\text{miss}} > 150 \text{ GeV}, m_T > 50 \text{ GeV}$

Discriminant: $m_T(\tau_{\text{had}}, E_T^{\text{miss}})$

W/Z: shape from MC, norm. to data

Multijet: From data

e, μ faking τ: MC, validated with data
\(H/A \rightarrow \tau \tau \)

Selection

Channels: \(\tau e \tau_{\text{had}}, \tau \mu \tau_{\text{had}}, \tau e \tau_{\mu}, \tau_{\text{had}}\tau_{\text{had}} \).

Candidates are OS and well-separated in \(\Delta R \).

\(\tau e \tau_{\text{had}}, \tau \mu \tau_{\text{had}} \): No OS ee or \(\mu \mu \) pairs.

\(m_T(\ell, E_T^{\text{miss}}) < 40 \text{ GeV} \) (e) < 30 GeV (\(\mu \)).

Topological \(t \bar{t} \) rejection in \(\tau e \tau_{\mu} \).

Categorize: 0-tag, \(\geq 1 \) tag.

Backgrounds

\(Z \rightarrow \tau \tau \): MC, cross-checked w/ \(Z \rightarrow \mu \mu \).

\(W + \text{jets, multijet} \): From SS and high-\(m_T \) control regions.

\(t \bar{t} \): From MC, cross checked in data CRs.

Also results from associated \(b \) production and other MSSM benchmarks.
$H/A \rightarrow \tau\tau$

Selection

Either OS $\tau\ell\tau_{\text{had}} (w/ Z \rightarrow \ell\ell$ veto) or $\tau_{\text{had}}\tau_{\text{had}}$. Select on $\Delta\phi$ and $m_T (\tau, \tau_{\text{had}}, \ell)$.

b-veto (0 tag) and tagged (≥ 1 tag) categories. Use m_T^{tot} as discriminant.

$$(m_T^{\text{tot}})^2 = m_T^2 (E_{\text{miss}}^\tau, \tau_1) + m_T^2 (E_{\text{miss}}^\tau, \tau_2) + m_T^2 (\tau_1, \tau_2)$$

Backgrounds

$\tau\ell\tau_{\text{had}}$: BG w/ true τ/ℓ from MC; misidentified τ/ℓ from fake-factor method.

$\tau_{\text{had}}\tau_{\text{had}}$: Multijet BG from fake-factor method; other BGs from MC with fake factors applied.

Also associated b production.
Invisible Higgs decays

Invisible decays of scalars is a feature of models with SUSY (LSP) or large extra dimensions (graviscalar).

Search for invisibly-decaying heavy scalar.

Tag production of scalar by associated production with Z or by vector boson fusion.
Assume H decays *exclusively* to invisible (LSP, etc). Require $Z \rightarrow \ell\ell + E_T^{\text{miss}}$.

$Z \rightarrow \ell\ell$ w/ $p_T^Z > 60$ GeV, $E_T^{\text{miss}} > 100$ GeV, veto leptons, hard jets, b-tags.

Requirements on $\Delta \phi$ and E_T^{miss}/p_T^Z balance. 0/1-jet bins.

$Z + \text{ jets}$: From $\gamma + \text{ jets}$

Others: Different-flavor leptons.
Assume H decays exclusively to invisible (LSP, etc). Require VBF jet pair + E_T^{miss}.

2 jets, $\Delta \eta_{jj} > 3.6$, $m_{jj} > 1100$ GeV

$E_T^{\text{miss}} > 200$ GeV, no ℓ,

$\Delta \phi(j, E_T^{\text{miss}}) > 2.3$

5 control regions

$Z \rightarrow \mu \mu$; single-e, μ, or τ;

$\min \Delta \phi(E_T^{\text{miss}}, j) < 0.5$

Norm. BG by fitting to CRs; result from counting experiment.
Summary

- Many searches, many channels ...
 - ... leave no stone unturned!
- No signal from 2015 data.
- But accumulating more data rapidly.
 - Already have $\sim 10 \text{ fb}^{-1}$ of data recorded — more than all of 2015!
 - Expect first results from these data at ICHEP.
- Stay tuned!
Backup
Selection based on $m_h = 125$ GeV analysis

\begin{align*}
\text{Events/20 GeV} &\quad 1000 \quad 900 \quad 800 \quad 700 \quad 600 \quad 500 \quad 400 \quad 300 \quad 200 \\
\text{m}_{4\ell} \quad [\text{GeV}] &\quad 10^{-2} \quad 10^{-1} \quad 1 \quad 10 \quad 100 \\
\end{align*}

\begin{align*}
\text{Narrow width} &\quad \text{Expected} \quad \text{Observed} \\
\text{Expected} &\quad \pm 1\sigma \quad \pm 2\sigma \\
\text{Observed} &\quad \pm 1\sigma \quad \pm 2\sigma \\
\end{align*}
$H \rightarrow 4\ell$

CMS Preliminary

2HDM Type I, $\cos(\beta-\alpha)=0.1$

$m_A = m_H = m_H + 100 \text{ GeV}$

- Obs. 95% CL limit
- Exp. 95% CL limit
- $H \rightarrow ZZ \rightarrow 4\ell$ (HIG-15-004)
- Non-perturbative region

2.8 fb$^{-1}$ (13 TeV)

CMS Preliminary

2HDM Type II, $\cos(\beta-\alpha)=0.1$

$m_A = m_H = m_H + 100 \text{ GeV}$

- Obs. 95% CL limit
- Exp. 95% CL limit
- $H \rightarrow ZZ \rightarrow 4\ell$ (HIG-15-004)
- Non-perturbative region

2.8 fb$^{-1}$ (13 TeV)
Require $Z \rightarrow \ell\ell$, $E_T^{miss} > 125$ GeV, no b-tags.

3 categories: 0 jet, ≥ 1 jet, and VBF.

(VBF: 0 cent, 2 fwd jets w/ $\Delta \eta > 4$, $m_{jj} > 500$ GeV)

Discriminating variable: $m_T(\ell\ell, E_T^{miss})$.

VV BG from MC; $Z + \text{jets}$ modelled by $Z + \gamma$.

Exclusion of SM-like heavy Higgs as fcn. of m_H and Γ_H. ggF/VBF combined.

Interpret as EWS with mixing parameter C'.

ATLAS analysis: [ATLAS-CONF-2016-012]
$H \to VV \to XXqq$ (merged)

$\nu\nuqq$

No ℓ; $E_T^{\text{miss}} > 250$ GeV; Z-tagged large-R jet $p_T^{\text{miss}} > 30$ GeV; angular requirements
BG: $W/Z +$ jets, $t\bar{t}$ (shape MC, norm data)

$\ell\nuqq$

1ℓ; $E_T^{\text{miss}} > 100$ GeV; W-tagged large-R jet p_T, J and $p_T, \ell, J > \max(200$ GeV, $0.4m_{\ell, J})$;
Veto on b-tag close to J
BG: $W +$ jets, $t\bar{t}$ (shape MC, norm data)

$qqqq$

$E_T^{\text{miss}} < 250$ GeV; 2 W/Z-tagged large-R jets
0 ℓ; $p_T, J_1/2 > 450/200$ GeV; other topo req.
BG: multijet (analytic fit)

$llqq$ similar to previous slide.
$H \to XXqq$ (merged) (2)

Set combined exclusion limit for narrow scalar resonance to VV.

Interpret as new heavy neutral scalar:
- Λ: energy scale
- c_H: Coupling to SM Higgs.
- c_3: Coupling to gluons.

Use naive dimensional analysis (NDA) and unsuppressed benchmarks.
$H \rightarrow Z \gamma$

$Z \rightarrow ee, \mu\mu + \gamma$ Also $Z \rightarrow jj$ using large-R jets ($p_T^\gamma > 250$ GeV)

Plot $m(Z\gamma)$; fit background outside signal region with an analytic function.

Limits for narrow signal width.
$H \to Z\gamma$

$Z \to ee, \mu\mu + \gamma$

Plot $m(Z\gamma)$; fit background outside signal region with an analytic function.

Limits for two signal widths.
$H \rightarrow hh \rightarrow bb\tau\tau$

3 channels: $\tau_e\tau_{\text{had}}$, $\tau_\mu\tau_{\text{had}}$, $\tau_{\text{had}}\tau_{\text{had}}$.

Selection

2 OS τ’s; 2 b-tagged jets

$80 < m_{\tau\tau}, m_{bb} < 160$ GeV

Discriminant is $m_{\tau\tau}bb$; found from a kinematic fit.

Backgrounds

$Z + \text{jets}$: MC shape, normalized to $\mu\mu$ data

Multijet: From SS data

$t\bar{t} + \text{other}$: MC

Signal model: Narrow CP-even resonance decaying to hh

Scott Snyder (BNL)
High-mass Higgs searches at ATLAS and CMS
ICNFP Jul 11, 2016 30 / 40
$H \rightarrow hh \rightarrow bb\gamma\gamma$

Selection

2 γ; exactly 2 b-tagged jets
$|m_{\gamma\gamma} - m_h|/2 < \sigma(m_{\gamma\gamma})$ [1.55 GeV]
$95 < m_{bb} < 135$ GeV

Final window cut in $m_{\gamma\gamma bb}$ around each hypothesized mass keeping 95% of signal (width 20–50 GeV).

Backgrounds

From data using sidebands in $m_{\gamma\gamma}$ and $m_{\gamma\gamma bb}$. Extrapolation to signal region derived from 0-tag sample.

Non-resonant search not covered here.
Selection

2 OS leptons; 2 b-tagged jets

BDT trained at $m_H = 400$ GeV (for $m < 450$ GeV) or $m_H = 650$ GeV.

BDT variables

$m_{\ell\ell}, \Delta R_{\ell\ell}, \Delta R_{jj}, \Delta \phi_{\ell\ell,jj}, p_T^{\ell\ell}, p_T^{jj}, \min \Delta R_{\ell,j}, M_T$

Backgrounds

Fit BDT output to signal+bkg model in 4 bins: signal region plus BDT/m_{jj} sidebands.
Resolved: 4 b-tagged small-R jets
Boosted: 2 large-R jets w/3 or 4 associated b-tagged track jets
$tt\bar{t}$ veto
Mass-dependent requirements on p_T of jet pairs/large-R jets.

$$\sqrt{\left(\frac{m_{h1}-124\text{GeV}}{0.1m_{h1}}\right)^2 + \left(\frac{m_{h2}-124\text{GeV}}{0.1m_{h2}}\right)^2} < 1.6$$

Boosted, ≥ 2 tags

Non-resonant search not covered here.
$H \to hh \to bbbb$

4 b-tagged small-R jets

Low mass (260–400 GeV):

$\sigma_h = 17$ GeV

High mass (400–1200 GeV):

$\sigma_h = 23$ GeV

$$\sqrt{\left(\frac{m_{h1}-115\text{GeV}}{\sigma_h}\right)^2 + \left(\frac{m_{h2}-115\text{GeV}}{\sigma_h}\right)^2} < 1$$

Backgrounds

Fit curve to m_{bbbb} from sideband regions.

Scott Snyder (BNL)

High-mass Higgs searches at ATLAS and CMS

[ICNFP Jul 11, 2016 34 / 40]
$H \rightarrow ZA \rightarrow \ell\ell b\bar{b}$

$m_H = 300 \text{ GeV}$

$2.3 \text{ fb}^{-1} (13 \text{ TeV})$

$m_H = 800 \text{ GeV}$

$2.3 \text{ fb}^{-1} (13 \text{ TeV})$
Search for $t\bar{t} \rightarrow \ell + \text{jets} \geq 1$ additional b.

Fit data to 4 CR and one SR:

\[5j(2\text{b}), 4j(\geq 3\text{b}), 4j(2\text{b}), \geq 6j(2\text{b}) \rightarrow H_T \geq 5j(\geq 3\text{b}) \rightarrow \text{BDT} \]

BDT incl. $p_T(j_1)$, H_T, m_{bb}, $\Delta R(bb)$, 2nd Fox-Wolfram mom.

BG: $t\bar{t}$: MC + data-based p_T-reweight; multijet from data; others from MC.

Plot:

- ATLAS
- Post bkg-only fit
- Data
- $t\bar{t}+\text{LF}$
- $t\bar{t}+\text{cc}$
- $t\bar{t}+\text{bb}$
- Other bkg
- Total unc.

- Total bkg
 - in sig+bkg fit
 - $H^+ 500 \text{ GeV}$ shape

- Observed limit (CLs)
- Expected limit (CLs)
- Exp. limit with injected signal
 - $m_H=300 \text{ GeV}, \sigma\times\text{BR}=1.65 \text{ pb}$
Type-II seesaw model for generating neutrino masses includes a scalar triplet with physical particles Φ^{++}, Φ^+, Φ^0.
Produced as either $Z/\gamma \to \Phi^{++}\Phi^{--}$ or $W^+ \to \Phi^{++}\Phi^-$.
Primary decay $\Phi^{++} \to \ell^+\ell^+$ (decay to W^+W^+ suppressed for realistic neutrino masses).

Interpret in terms of benchmark points of type-II seesaw model.
BP1: Neutrino sector with a massless neutrino and normal mass hierarchy.
Other benchmark points in paper.

Search in categories $\ell\ell\tau_{\text{had}}$, $\ell\ell\ell\tau_{\text{had}}$, $\ell\ell\tau_{\text{had}}\tau_{\text{had}}$ ($\ell \equiv e, \mu$, flavors may be mixed in a category).
Plot mass of same-sign lepton pairs.

95% CL: $m(\Phi^{++}) > 383$ GeV (BP1)
Select primary vertex using photon pointing and NN discriminant.

\[p_T(\gamma) > 55 \text{ GeV}; \ m_{\gamma\gamma} > 200 \text{ GeV} \]
\[p_T(\gamma_1) > 0.4m_{\gamma\gamma}; \ p_T(\gamma_2) > 0.4m_{\gamma\gamma} \]

\[p_T(\gamma) > 75 \text{ GeV} \]
EBEB: Both \(\gamma \) in barrel; \(m_{\gamma\gamma} > 230 \text{ GeV} \)
EBEE: 1 barrel \(\gamma \), 1 endcap \(\gamma \); \(m_{\gamma\gamma} > 330 \text{ GeV} \)
Also categorize on \(\gamma \) shape and \(B \) field on/off.
Exclusion limits for narrow scalar resonance from 13 TeV data.

Results also available for other widths.
$H \rightarrow \gamma\gamma$ (3)

$m_{\gamma\gamma}$ from 8 TeV data

ATLAS

- Data
- Background-only fit

Spin-2 Selection

$\sqrt{s} = 8$ TeV, 20.3 fb$^{-1}$

CMS

- Data
- Fit model

19.7 fb$^{-1}$ (8 TeV)

EBEB $\min(R_{EBEB}) > 0.94$

$\sigma(data-fit)/2 - 0$

$stat$