Rare b Decays and Tests of LFU at LHCb

Simone Bifani
University of Birmingham (UK)
On behalf of the LHCb Collaboration

ICHEP 2016, 6th August 2016
A Forward Spectrometer

- Optimized for beauty and charm physics at large pseudorapidity (2<\(\eta<5\))
 - **Trigger**: \(\sim 90\%\) efficient for di-muon channels, \(\sim 30\%\) for all-hadronic
 - **Tracking**: \(\sigma_p/p\ 0.4\%–0.6\%\ (p\ from\ 5\ to\ 100\ GeV),\ \sigma_{IP} < 20\ \mu m\)
 - **Vertexing**: \(\sigma_{\tau}\ \sim 45\ \text{fs}\)
 - **PID**: 97% \(\mu\) ID for 1–3\% \(\pi\rightarrow\mu\) misID
Analyses presented today based on the Run 1 dataset

Due to luminosity levelling, same running conditions throughout fills

Simone Bifani
Why Rare b Decays?

> $b \to sll$ decays proceed via **FCNC transitions** that only occur at loop order (and beyond) in SM

![FCNC transitions](image)

> New particles can contribute to loop or tree level enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

![New particles](image)

> Goal

 » **Make precise measurements of rare FCNC decays as precision tests of the SM**

 » **Make null tests of the SM, e.g. look for LFV or LNV decays that are essentially forbidden in the SM**
Differential branching fractions of $B^0 \rightarrow K(\ast)^0 \mu \mu$, $B^+ \rightarrow K(\ast)^+ \mu \mu$, $B_s \rightarrow \phi \mu \mu$, $B^+ \rightarrow \pi^+ \mu \mu$ and $\Lambda_b \rightarrow \Lambda \mu \mu$ decays

» Large hadronic uncertainties in theory predictions

Angular analyses of $B \rightarrow K(\ast)\mu \mu$, $B_s \rightarrow \phi \mu \mu$, $B^0 \rightarrow K^0 ee$ and $\Lambda_b \rightarrow \Lambda \mu \mu$

» Define observables with small theory uncertainties

Test of Lepton Flavour Universality in $B^+ \rightarrow K^+ ll$

» Cancellation of hadronic uncertainties in theory predictions
Results **consistently lower than SM predictions** despite large theory uncertainties from form-factors.

- **Differential Branching Fractions**
 - $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - $B^0 \rightarrow K^0 \mu^+ \mu^-$

![Graphs showing differential branching fractions](image-url)
Results consistently lower than SM predictions despite large theory uncertainties from form-factors.

Differential Branching Fractions

- **B^0 \rightarrow K^{*0} \mu \mu**
- **B^+ \rightarrow \pi^+ \mu \mu**
- **B_s \rightarrow \phi \mu \mu**
- **B_0 \rightarrow K^* \mu \mu**
- **\Lambda_b \rightarrow \Lambda \mu \mu**
Angular Analyses

- Four-body final states

- System described by three angles (helicity basis) and the di-lepton invariant mass squared, q^2

- Complex angular distribution that provides many observables sensitive to different types of NP

- Each observable depends on different Wilson coefficients (underlying short-distance physics) and form-factors (hadronic matrix elements)
Angular Analyses

First **full angular analysis** of $B^0 \rightarrow K^* \mu \mu$: full set of CP-averaged angular terms and correlations as well as full set of CP-asymmetries

Can construct **form-factor independent ratios of observables**

New Belle result consistent with LHCb

[Descotes-Genon et al, JHEP 05 (2013) 137]
Angular Analyses

- Results consistent with SM predictions

\[B^0 \rightarrow K^{*0}ee \]

- \(F_L = 0.16 \pm 0.06 \pm 0.03 \)
- \(A_{T}^{Re} = 0.10 \pm 0.18 \pm 0.05 \)
- \(A_{T}^{(2)} = -0.23 \pm 0.23 \pm 0.05 \)
- \(A_{T}^{Im} = 0.14 \pm 0.22 \pm 0.05 \)

\[JHEP 04 (2015) 064 \]

- Low-\(q^2 \): 0.0004–1 GeV\(^2\)
- Challenging due to Bremsstrahlung
- Sensitive to photon polarisation

- \(\Lambda_b \): gives access to different combinations of Wilson coefficients

\[JHEP 09 (2015) 179 \]

Simone Bifani

ICHEP 2016
Several attempts to interpret results by performing global fits to \(b \to s \) data (e.g. \(\text{arXiv:1503.06199, arXiv:1510.04239 and arXiv:1512.07157} \))

Take into account \(\sim 80 \) observables from 6 experiments including \(b \to \mu\mu \), \(b \to s\ell\ell \) and \(b \to s\gamma \) transitions

All global fits require an additional contribution with respect to the SM to accommodate the data, with a preference for NP in \(C_9 \) at \(\sim 4\sigma \)

> Or is this a problem with our understanding of QCD? (e.g. are we correctly estimating the contribution for charm loops?)
Tests of LFU

▷ Ratio of branching fractions of $B^+ \rightarrow K^+ \mu\mu$ to $B^+ \rightarrow K^+ ee$ expected to be unity in the SM (theoretical uncertainty of $O(10^{-3})$)

▷ Observation of LFU violations would be a clear sign of NP

▷ Extremely challenging due to Bremsstrahlung and different trigger / tracking performances between muons and electrons

▷ Measured relative to $B^+ \rightarrow K^+ J/\psi(\Upsilon)$ in order to reduce systematics

▷ Observed a 2.6σ deviation from SM

▷ Consistent with decay rate if NP does not couple to electrons

▷ Pursuing other R–like measurements (e.g see talk by S.Klaver on $R(D^*)$)

Simone Bifani

ICHEP 2016
Rare b decays place strong constraints on many NP models allowing to probe energy scales higher than direct searches

A large number of analyses have been performed using Run 1 data

While there is no significant evidence for NP from a single measurement, a clear tension with the SM have been seen in global fits to rare decay observables

Rare decays will largely benefit from the increase of energy (cross-section) and collected data (~5 fb⁻¹ expected in LHCb) in Run 2
Di-Lepton Mass

Photon pole enhancement (doesn’t exist for $B \to P\ell\ell$ decays)

$\frac{d\Gamma}{dq^2}$

$C_7^{(1)} C_9^{(1)}$ interference

removed from analysis

$c\bar{c}$ above open charm threshold

$C_9^{(1)}$ and $C_{10}^{(1)}$

$J/\psi(1S)$

$b \to c\bar{c}s$ tree level (!)

$\psi(2S)$

q^2

dimuon mass squared

$4[m(\mu)]^2$
Differential Branching Fractions

\[\frac{dB}{dq^2} \quad [10^{-7} \text{ GeV}^{-2}]\]

\(\Lambda_b \rightarrow \Lambda \mu\mu\)

\[\frac{d\sigma}{dq^2} \quad 10^{-2} \text{ GeV}^{-2} \cdot \text{cm}^{-2}\]

\(\Lambda_b \rightarrow \Lambda \mu\mu\)

\[F_S, \%\]

\(B^0 \rightarrow K^*0\mu\mu\)

\[q^2 \quad [\text{GeV}^2 / c^4]\]

\[LHCb, \text{ CMS (7, 8 TeV)}\]

\[\text{BaBar, Belle, CDF}\]

\[\text{SM prediction}\]

\[\text{Data}\]

\[\text{JHEP 06 (2015) 115}\]

Simone Bifani

ICHEP 2016

arXiv:1507.08126

arXiv:1606.04731
Angular Analyses

LHCb

$0.10 < q^2 < 0.98 \text{ GeV}^2/c^4$

Candidates / 5.3 MeV/c2

$m(K^+ \pi^- \mu^+ \mu^-) [\text{MeV}/c^2]$
First **full angular analysis** of $B^0 \rightarrow K^* \mu\mu$: full set of CP-averaged angular terms and correlations as well as full set of CP-asymmetries

Can construct **form-factor independent ratios** of observables

New Belle result consistent with LHCb

Angular Analyses

First full angular analysis of $B^0 \rightarrow K^* \mu\mu$: full set of CP-averaged angular terms and correlations as well as full set of CP-asymmetries

Can construct **form-factor independent ratios** of observables

New Belle result consistent with LHCb

Angular Analyses

First full angular analysis of $B^0 \rightarrow K^* \mu\mu$: full set of CP-averaged angular terms and correlations as well as full set of CP-asymmetries

Can construct **form-factor independent ratios** of observables

New Belle result consistent with LHCb
Tests of LFU

- Even after Bremsstrahlung recovery there are significant differences between dielectron and dimuon final states:

![Graphs showing data from LHCb experiment](image)

LHCb [PRL113 (2014) 151601]

- Partially reconstructed decays

Simone Bifani

ICHEP 2016
Theoretical Framework

- In the Fermi model of the weak interaction, the full electroweak Lagrangian (which was unknown at the time) is replaced by the low-energy theory (QED) plus a single operator with an effective coupling constant.

\[\mathcal{L}_{\text{EW}} \rightarrow \mathcal{L}_{\text{QED}} + \frac{G_F}{\sqrt{2}} (\bar{ud})(e\bar{\nu}) \]

- Can write a Hamiltonian for the effective theory as

\[\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i C_i(\mu) O_i(\mu), \]

- Wilson coefficient (integrating out scales above \(\mu \))
- Local operator with different Lorentz structure (vector, axial vector current etc)
Operators

SM operators

\[\mathcal{O}_7 = \frac{m_b}{e} \bar{s}\sigma^{\mu\nu} P_R b F_{\mu\nu}, \]
\[\mathcal{O}_8 = g_s \frac{m_b}{e^2} \bar{s}\sigma^{\mu\nu} P_R T^a b G^a_{\mu\nu}, \]
\[\mathcal{O}_9 = \bar{s}\gamma_\mu P_L b \bar{\ell}\gamma_\mu \ell, \]
\[\mathcal{O}_{10} = \bar{s}\gamma_\mu P_L b \bar{\ell}\gamma_\mu\gamma_5 \ell, \]

Beyond SM operators

\[\mathcal{O}_7' = \frac{m_b}{e} \bar{s}\sigma^{\mu\nu} P_L b F_{\mu\nu}, \]
\[\mathcal{O}_8' = g_s \frac{m_b}{e^2} \bar{s}\sigma^{\mu\nu} P_L T^a b G^a_{\mu\nu}, \]
\[\mathcal{O}_9' = \bar{s}\gamma_\mu P_R b \bar{\ell}\gamma_\mu \ell, \]
\[\mathcal{O}_{10}' = \bar{s}\gamma_\mu P_R b \bar{\ell}\gamma_\mu\gamma_5 \ell. \]

 photon penguin

vector and axial-vector currents

right handed currents
(suppressed in SM)
Angular Analyses

- Complex angular distribution:

\[
\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\Omega} \bigg|_P = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \right.
\]

\[
\left. + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_l - F_L \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi + \right.
\]

\[
\left. + \frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \right]
\]

The observables depend on form-factors for the \(B \to K^* \) transition plus the underlying short distance physics (Wilson coefficients).
Interpretation of Global Fits

Optimist's view point

Vector-like contribution could come from new tree level contribution from a Z' with a mass of a few TeV

Pessimist's view point

Vector-like contribution could point to a problem with our understanding of QCD, e.g. are we correctly estimating the contribution for charm loops that produce dimuon pairs via a virtual photon.

More work needed from experiment/theory to disentangle the two
Interpretation of Global Fits

• This is the physics we are interested in.

• We also get long-distance hadronic contributions. Included in the SM but are the predictions correct?

Short distance part integrates out (as a Wilson coefficient)