Flavour physics results at the LHC

Olivier Schneider
on behalf of the LHCb collaboration

Olivier.Schneider@epfl.ch
Flavour physics results at the LHC

- Flavour physics in the quark sector
 - what is it? why is it important? how does LHC contribute?

- A few B-physics results from the LHC experiments, including textbook examples and current “flavour anomalies”
 - Measurements of CP violation and CKM observables
 - Search for new phenomena in rare $b \rightarrow s$ transitions
 + lepton-flavour universality

showing LHC Run 1 data from ATLAS, CMS and (mostly) LHCb

(sorry for having to omit many results, including from the charm sector)
Standard Model (SM) of particles

- Matter is made of fermions (spin 1/2) of different "flavours"
- Each fermion has an anti-matter partner

<table>
<thead>
<tr>
<th>Leptons</th>
<th>electron e</th>
<th>muon μ</th>
<th>tau τ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>neutrino ν_e</td>
<td>neutrino ν_μ</td>
<td>neutrino ν_τ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarks</th>
<th>up u</th>
<th>charm c</th>
<th>top t</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>down d</td>
<td>strange s</td>
<td>bottom b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electric charge [e]</th>
<th>Colour charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>no</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$+2/3$</td>
<td>yes</td>
</tr>
<tr>
<td>$-1/3$</td>
<td></td>
</tr>
</tbody>
</table>

- Quarks only appear in colourless combinations (=hadrons), bound by the strong force:

- Forces are described as exchanges of bosons (gluons, photon, W^\pm and Z^0 for strong, e.m. weak interactions, respectively)

- Flavour physics = study of transitions between fermions of different flavours

Encontro de Física 2016, Natal, Brasil

O. Schneider
SM Higgs boson generates masses of particles
Quark mass eigenstates are different from weak eigenstates
→ quark mixing matrix (Cabibbo, Kobayashi, Maskawa)

Different mixing matrix for quarks and anti-quarks ⇒ CP violation

\[
\begin{align*}
\text{Quarks} & : & \begin{pmatrix}
 d' \\
 s' \\
 b'
\end{pmatrix} &=
\begin{pmatrix}
 V_{ud} & V_{us} & V_{ub} \\
 V_{cd} & V_{cs} & V_{cb} \\
 V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
 d \\
 s \\
 b
\end{pmatrix} \\
\text{Anti-quarks} & : & \begin{pmatrix}
 \bar{d}' \\
 \bar{s}' \\
 \bar{b}'
\end{pmatrix} &= \begin{pmatrix}
 V_{ud}^* & V_{us}^* & V_{ub}^* \\
 V_{cd}^* & V_{cs}^* & V_{cb}^* \\
 V_{td}^* & V_{ts}^* & V_{tb}^*
\end{pmatrix}
\begin{pmatrix}
 \bar{d} \\
 \bar{s} \\
 \bar{b}
\end{pmatrix}
\end{align*}
\]
CP violation in the Standard Model (SM)

- **CKM matrix:**
 - complex and unitary
 - \(4\) parameters (e.g. 3 angles and 1 phase)

\[
V_{\text{CKM}} V_{\text{CKM}}^\dagger = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

\[\Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0\]

- \(6\) unitarity triangles

- most sensitive experimental tests on the two unsquashed triangles, with transitions involving b quarks

“The Unitarity Triangle”
(area \(\propto\) CP violation)
Discoveries of CP violation

1964:
- Cronin & Fitch in K^0 decays

2001:
- BaBar & Belle in B^0 decays

2013:
- LHCb in B_s decays

still awaited:
- in D^0 decays
- in baryon decays

LHCb, PRL 110 (2013) 221601

LHCb-PAPER-2016-030

O. Schneider
CP violation visualized in the simplest way

- **C** = charge conjugation
 - replacing all particles with their anti-particles
- **P** = parity (space reversal)
 - swapping left and right (like a mirror does)

\[B^0 \rightarrow K^+\pi^- \neq B^0 \rightarrow K^-\pi^+ \]

| LHCb, PRL 110 (2013) 221601 | Encontro de Física 2016, Natal, Brasil | O. Schneider | 7 |
Global CKM fit

- Fit all available data to constrain the position of the apex of the unitary triangle
 - this needs theory input, e.g. from QCD calculations on the lattice (LQCD)

- Available measurements in 2001:
 - CP violation in K^0 decays
 - $|\varepsilon_K|$
 - sides of the triangle
 - $|V_{ub}/V_{cb}|$, Δm_d and Δm_s
 - very first B-factory measurements of CP violation in B^0 decays
 - $\sin 2\beta$

Complex plane, where base of triangle is normalized to 1 and taken as real

Encontro de Física 2016, Natal, Brasil

O. Schneider
Global CKM fit

- Status in 2006

- 2008 Nobel prize awarded to Kobayashi & Maskawa!

Encontro de Física 2016, Natal, Brasil

O. Schneider
Status in 2010, before LHC comes into play
Global CKM fit

- **Status ~now**
 - substantial reduction of many experimental and theoretical uncertainties
 - large impact of LHCb

- **All measurements beautifully consistent within SM!**
This is not enough!

- **SM cannot be the ultimate theory**
 - Too many free parameters (quark and lepton masses and mixing parameters) pattern must be governed by a hidden mechanism yet to be discovered
 - SM believed to be a low-energy effective theory of a more fundamental theory at a certain high energy scale Λ, in the TeV region or above

- **Plenty of extensions of the SM introduce new particles, dynamics, symmetries, … at a higher scale Λ**

 We must search for New Physics (NP), i.e.
 - new particles and interactions
 - new sources of CP violation

- **Two compelling cosmological reasons**
 - existence of dark matter
 → no candidate in SM
 - matter-antimatter asymmetry of the Universe
 → CP violation in SM totally insufficient to explain baryogenesis
Two approaches to New Physics search

- New particles could
 ① be produced and observed directly as real particles with specific signatures
 • e.g. multiple jets and/or leptons with large amount of missing energy
 ⇒ Need high energy
 ② appear as virtual particles in loop processes, leading to observable deviations from the SM expectations
 • e.g. decay probability of known heavy hadrons (containing a b or c quark)
 ⇒ Need high precision (statistics)

- The two approaches are complementary
Strengths of indirect searches

- Can access higher scales and therefore sense new effect earlier:
 - Example: third quark generation inferred by Kobayashi and Maskawa (1973) to explain small CP violation measured with kaons (1964), but only directly observed in 1977 (b) and 1995 (t)

- Can access phases
 - if NP is discovered, it is important to measure the phases of the new couplings

NB: phase measurements (e.g. CP violation) need quantum interference of two amplitudes
The flavour problem

- Flavour-Changing Neutral Currents (FCNC) suppressed in the SM
 - cannot happen at the tree level, but only at loop level (higher-order)

- At the start of LHC
 - NP scale Λ was thought to be $O(\text{TeV})$, where NP with generic flavour structure should have large FCNC effects

- Today
 - no NP discovered (yet)
 - current data exclude NP with large FCNC effects

- So …
 - either NP sits at a much larger scale, out of collider reach
 - or NP has a mechanism to suppress FCNC effects (SM-like flavour structure and/or very small couplings c_{NP})

Amplitude in terms of couplings and scales

$$\Lambda \sim \frac{c_{\text{SM}}}{M_W^2} + \frac{c_{\text{NP}}}{\Lambda^2}$$
Strategy for indirect NP search

- Improve precision of CKM measurements
 - measure all angles and sides of UTs in many different ways
 - different observables may or may not be sensitive to NP
 - test consistency within SM
 - needs theory input to relate measurements to CKM elements
 - any inconsistency is a sign of NP

- Measure FCNC transitions, where NP could still emerge (at 10–20% level)
 - e.g. rare decays, neutral meson mixing
 - favour observables with clean SM predictions

Note:
- flavour physics is often hindered by hadronic (QCD) effects, which are difficult to calculate
LHCb
(LHCb, violation of CP)

LHC ring (27 km = 0.09 ms)

Geneva

CERN

LHC = CERN’s Flavour Factory

The world’s most intense source of b and c quarks

pp collisions:
7–8 TeV during Run 1 (2010–2012)

Lake
Huge production

- $\sigma_{bb} = 300 \, (500) \, \mu b$ at $\sqrt{s} = 8 \, (13) \, \text{TeV}$
- All b-hadron species produced

"Asymmetric" flavour factory:

- Gluon-gluon fusion

<table>
<thead>
<tr>
<th>ATLAS/CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detector geometry</td>
<td>central</td>
</tr>
<tr>
<td>Angular coverage</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>~40% of bb pairs</td>
</tr>
<tr>
<td>Heavy flavour physics with</td>
<td>dimuon decays only,</td>
</tr>
<tr>
<td></td>
<td>high p_T thresholds</td>
</tr>
<tr>
<td>7 TeV sample</td>
<td>~5 fb$^{-1}$</td>
</tr>
<tr>
<td>8 TeV sample</td>
<td>~20 fb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>1 fb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>2 fb$^{-1}$</td>
</tr>
</tbody>
</table>

- θ_1 [rad]
- θ_2 [rad]
- η [rad]
- ϕ [rad]
- z [rad]

LHCb MC
$\sqrt{s} = 8 \, \text{TeV}$
Experiment optimized for flavour physics:
- angular coverage
- efficient trigger for hadronic and leptonic modes
- precision tracking and vertexing (mass, proper time)
- excellent particle identification (e.g. \(\pi, K, p \))
Measurements of CP violation and CKM observables
\[\Delta m_d \text{ and } \Delta m_s \]

- \(B_{d,s} \) and \(\bar{B}_{d,s} \) are quantum superpositions of two mass state with splitting \(\Delta m_{d,s} \)

\[\Rightarrow B_{d,s} - \bar{B}_{d,s} \text{ oscillations} \]

- in the SM

\[\Delta m_s / \Delta m_d = \frac{m_{B_s}}{m_{B_d}} \left| \frac{V_{ts}}{V_{td}} \right|^2 (1.206 \pm 0.019)^2 \]

- Theory uncertainty dominates

Encontro de Física 2016, Natal, Brasil

O. Schneider 21
CP-violating phase ϕ_s

— phase difference between the B_s mixing amplitude and the $b \rightarrow c\bar{c}s$ decay amplitude of the B_s meson

— small in SM, very sensitive to NP contributions to B_s mixing:

$$\phi_s^{SM} \equiv -2\beta_s \equiv -2 \arg \left(-\frac{V_{ts} V_{tb}^*}{V_{cs} V_{cb}^*}\right) = -37.6^{+0.8}_{-0.7} \text{ mrad}$$

Best mode is $B_s \rightarrow J/\psi K^+K^-$

— final state is mixture of CP+ and CP− need time-dependent angular analysis of flavour-tagged events

— extract ϕ_s, $\Delta \Gamma_s$, Δm_s, ...

World average $\phi_s = -30 \pm 33 \text{ mrad}$
CPV in $B_s \to J/\psi K^+K^-$

- ATLAS
 - PRD 90 (2014) 052007
 - arXiv:1601.03297
- CMS
 - PLB 757 (2016) 97
- LHCb (shown here)
 - PRL 114 (2015) 041801
 - also $B_s \to \psi(2S)K^+K^-$
 - arXiv:1608.04855
 - + pure CP final states
 - PLB 736 (2014) 186
 - PRL 113 (2014) 211801

3 fb$^{-1}$
~ 100k signal events (background subtracted)

Decay time [ps]

Candidates / 0.05 ps

Candidates / (0.2 ps)

1000
2500
3000
3500

Candidates / 0.05

10
500

Candidates / (0.05π rad)

- total fit
- CP-even P-wave component
- CP-odd P-wave component
- CP-odd S-wave component

Encontro de Física 2016, Natal, Brasil

O. Schneider 23
|\text{V}_{ub}| \text{ from } \Lambda_{b} \rightarrow p\mu\nu

- Suppressed \(b \rightarrow u\) transition rate measured with respect to \(b \rightarrow c\)
- New LHCb measurement with \(\Lambda_{b}\) decays

\[
|V_{ub}|^2 = \frac{BR(\Lambda_{b} \rightarrow p\mu\bar{\nu}_{\mu})}{BR(\Lambda_{b} \rightarrow \Lambda_{c}^{+}\mu\bar{\nu}_{\mu})} \times R_{FF}
\]

\(R_{FF}\) = form factor ratio from LQCD

O. Schneider
Long-standing discrepancy (~3σ) between two world averages
- $|V_{ub}| = (3.28 \pm 0.29) \times 10^{-3}$ from excl. $B \to \pi \ell \nu$
- $|V_{ub}| = (4.41 \pm 0.22) \times 10^{-3}$ from incl. $B \to X \ell \nu$

New LHCb measurement
- $|V_{ub}| = (3.27 \pm 0.15_{\text{exp}} \pm 0.16_{\text{LQCD}} \pm 0.06_{V_{cb}}) \times 10^{-3}$ from exclusive $\Lambda_b \to p \mu \nu$
- consistent with excl. average
- inconsistent with incl. average (3.5σ)

Assume a fractional right-handed contribution ε_R to the SM weak current
- $|V_{ub}|$ determinations now depend on ε_R
- exclusive determinations consistent with SM ($\varepsilon_R=0$)

\(\gamma \) from \(B^\pm \rightarrow DK^\pm \)

\(\gamma \) is the only CP-violating parameter that can be measured from tree-level decays → important NP-free reference

- most powerful method is using \(B^\pm \rightarrow DK^\pm \) decays
- two tree-level amplitudes (favoured \(b \rightarrow c \) and suppressed \(b \rightarrow u \))

- make them interfere by considering final states \(f_D \) accessible to both \(D^0 \) and \(D^0 \) (e.g. \(f_D = K^+K^-, \pi^+\pi^-, K^\pm\pi^\mp, \pi^\pm\pi^\mp \))

- measure the relative rates of \(B^- \rightarrow f_D K^- \) and \(B^+ \rightarrow f_D K^+ \)

- solve for all unknowns and extract \(\gamma \)

GLW: Gronau, London, Wyler

ADS: Atwood, Dunietz, Soni,
PRL 78 (1997) 3257

O. Schneider
ADS favoured modes
— 29'470 ± 230 B± → (K±π∓)K± events

ADS suppressed modes
— 553 ± 34 B± → (π±K∓)K±
— CP violation at 8σ

GLW modes
— 1'162 ± 48 B± → (ππ)K±
— 3'816 ± 92 B± → (KK)K±
— CP violation at 5σ (combined)

etc
— … (also B± → Dπ±)
Many measurements of γ with tree decays
- several $B \to DX$ and D decays modes
- no single golden mode, need to combine results

LHCb
- Combine all $B \to DK$ measurements
 - 72 observables, 32 parameters

$\gamma = \left(70.9 \pm 7.1 \right)^\circ$

B factories:
- BaBar $(69^{+17}_{-16})^0$
- Belle $(68^{+15}_{-14})^0$

Encontro de Física 2016, Natal, Brasil

O. Schneider
Search for New Physics
in rare $b \rightarrow s$ transitions
+ lepton flavour-violation
Very rare FCNC decay in the SM
- loop (higher-order) decay
- CKM suppression
- helicity suppression
 - Lorentz structure of weak interaction

Clean SM predictions
- $\text{BR}_{\text{SM}}(B_s \rightarrow \mu^+\mu^-) = (3.66 \pm 0.23) \times 10^{-9}$
- $\text{BR}_{\text{SM}}(B^0 \rightarrow \mu^+\mu^-) = (1.06 \pm 0.09) \times 10^{-10}$

Can be strongly enhanced in many NP models, e.g. with new (pseudo)scalars
- Minimal Supersymmetric SM (MSSM) with large $\tan\beta$

\[
\text{BR} \propto \left(C^{\text{MSSM}}_{S,P}\right)^2 \propto \frac{\tan^6\beta}{M_A^4}
\]
Combined CMS and LHCb analysis from Run 1 data

- **First observation** of $B_s \rightarrow \mu^+\mu^-$
 - $\text{BR} = (2.8^{+0.7}_{-0.6}) \times 10^{-9}$

- **First evidence** of $B^0 \rightarrow \mu^+\mu^-$
 - $\text{BR} = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$

- Overall consistency with SM at 2σ level

- Recent result from ATLAS
 - No significant B_s signal (1.4σ), no B^0 signal
 - 95% CL upper limits close to CMS+LHCb central values
 - Compatible with SM at 2σ level
3 decades of experimental efforts …

... supersymmetric models with large tanβ now ruled out
Suppressed loop decay, sensitive to NP

- Kinematics in terms of $q^2 = m(\mu\mu)^2$ and 3 helicity angles

- Angular analysis offers many q^2-dependent observables with clean SM predictions

LHCb

- Full angular analysis of B^0 and \bar{B}^0
 - Complete set of observables
 - Measured for the first time
 - $K\pi$ S-wave taken into account

CMS

- Partial angular analysis (less observables)

$B^0 \rightarrow K^{*0}\mu^+\mu^-, \ K^{*0} \rightarrow K^{+}\pi^-$

Candidates / 11 MeV/c2

LHCb, JHEP 02 (2016) 104

$B^0 \rightarrow K^{*}\mu\mu$

LHCb

$\psi(2S)$ veto

J/ψ veto

Encontro de Física 2016, Natal, Brasil

O. Schneider 33
LHCb

- no significant CP asymmetries
- all CP-averaged observables, except P_5', agree individually with SM predictions
- P_5' anomaly (already seen with first 1 fb$^{-1}$) is confirmed: 3.4σ from SM prediction

Belle

- sees deviation in P_5' (2.1σ) consistent with LHCb

Fluctuations,
underestimated hadronic effect,
… or New Physics?

$B^0 \rightarrow K^{*0}\mu^+\mu^-$ anomaly

- q^2 [GeV2/c4]
- P_5'
- LHCb 3 fb$^{-1}$
- SM from DHMV
- LHCb fit of the EW penguin Wilson coeff C_9,
including $S_3 S_9$,
F_L, A_{FB}:
3.4σ from SM

Theoretical work ongoing to better understand this effect:
NP or unexpectedly large hadronic effect?

See e.g. [Descotes-Genon et al., arXiv:1510.04239]

Channel also studied by
BaBar [arXiv:1508.07960],
Belle [PRL 103, 171801],
CMS [PLB 753(2016)424],
ATLAS [ATLAS-CONF-2013-038] and CDF [PRL 108, 081807]
Other $b \rightarrow s \mu^+ \mu^-$ decays

- $B_s \rightarrow \phi \mu^+ \mu^-$
 - 432 ± 24 signal events
 - angular observables agree with SM
 - differential BR in the region $1 < q^2 < 6$ GeV2 is 3σ below SM

- $\Lambda_b \rightarrow \Lambda \mu^+ \mu^-$
 - 285 ± 21 signal events
 - first measurements of forward-backward asymmetries
 - rate again below SM in low q^2 region

Intriguing picture with consistent deficit in many $b \rightarrow s \mu^+ \mu^-$ modes
Lepton Flavour Universality (LFU) in the SM

- same EW couplings for $\ell = e, \mu, \tau$

LHCb

- electron reconstruction challenging,
 huge tail due to energy loss

$B^+ \to K^+ \mu^+ \mu^-$

$B^+ \to K^+ e^+ e^-$

- for low q^2 region ($1 < q^2 < 6 \text{ GeV}^2/c^4$):

$$R_K = \frac{\text{BR}(B^+ \to K^+ \mu^+ \mu^-)}{\text{BR}(B^+ \to K^+ e^+ e^-)} = 0.745^{+0.090}_{-0.074} \pm 0.036$$

2.6σ from SM value of $1 \pm O(10^{-3})$
Test of LFU in tree decays

- LFU can also be tested with $B \to D^{(*)}\ell^-\nu$
 - not rare decays (no loop), sensitive to NP (charged Higgs) at tree level

- Observables $R(D)$ and $R(D^*)$

$$R(D^{(*)}) = \frac{BR(B^0 \to D^{(*)}\tau^+\nu_\tau)}{BR(B^0 \to D^{(*)}\ell^+\nu_\ell)}$$

with $\ell = e, \mu$

- LHCb
 - CHALLENGING ENVIRONMENT FOR τ RECONSTRUCTION (MISSING ν)

- 2D world average
 - 4.0σ away from SM

Non universality implies lepton flavour violation in many NP models
Conclusion and prospects

- **Flavour physics = essential component in the search for New Physics**
 - great boost in precision/reach from the analyses of LHC Run 1 data

- **A few interesting 3–4σ deviations from the SM predictions**
 - incl. vs excl. $|V_{ub}|$, P_5’ in $B^0 \rightarrow K^{*0}\mu^+\mu^-$, $b \rightarrow s\mu^+\mu^-$ rates, lepton universality

- **Results limited by statistics, but plans to collect much more data**
 - **LHCb**: $3 \rightarrow 8 \text{ fb}^{-1}$ by 2018, $\rightarrow 50 \text{ fb}^{-1}$ by ~2030
 - upgraded detector in 2021 with improved efficiency and DAQ capabilities
 - **ATLAS, CMS**: $25 \rightarrow 300 \text{ fb}^{-1}$ by 2024, ultimate upgrade goal is 3000 fb^{-1}
 - flavour physics program will depend on ability to maintain low p_T thresholds for dimuons and cope with increased pileup
 - **Belle 2** at Super-KEKB: ramp up in 2019, $\rightarrow 5 \text{ ab}^{-1}$ ($= 50 \times \text{Belle}$) by 2025

Exciting times ahead, stay tuned