Minimum bias and underlying event measurements with the ATLAS detector
Soft QCD - why bother?

- Phenomenological models of sQCD need experimental constraint
 - perturbation theory not possible
 - needs well described sQCD for understanding pile-up and underlying event activity in all LHC measurements
 - measurement done as differential distributions

\[
\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_T} \cdot \frac{d^2 N_{ch}}{d\eta dp_T}, \quad \frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}} \quad \text{and} \quad \langle p_T \rangle \text{ vs. } n_{ch}
\]

- Long standing history & improvements in ATLAS

<table>
<thead>
<tr>
<th>analysis differences</th>
<th>0.9 TeV</th>
<th>7 TeV</th>
<th>8 TeV</th>
<th>13 TeV</th>
<th>benefits @ 8+13 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>remove strange baryons</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes</td>
<td>reduces model dependence</td>
</tr>
<tr>
<td>high-n_{ch} phase spaces</td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
<td>paper scope + MC tuning</td>
</tr>
<tr>
<td>final Run-1 geometry</td>
<td></td>
<td></td>
<td>yes</td>
<td>yes (IBL)</td>
<td>reduces material uncertainty</td>
</tr>
<tr>
<td>baseline MC tune for analysis</td>
<td>Pythia 6</td>
<td>Pythia 6</td>
<td>Pythia 8 A2</td>
<td>Pythia 8 A2</td>
<td>reduces systematics (e.g. pt-spectrum)</td>
</tr>
<tr>
<td>Geant4 physics list</td>
<td>QGSP_BERT</td>
<td>QGSP_BERT</td>
<td>FTFP_BERT</td>
<td>FTFP_BERT</td>
<td>improves simulation of antiprotons</td>
</tr>
</tbody>
</table>
Charged particle distribution measurement

- **Track counting** measurement with correction to particle level
 - attempt to minimally bias your trigger selection
 - understanding the detector effects is biggest experimental challenge

 track reconstruction efficiency/systematics needs to be well understood (dominant)

 additionally corrections to trigger efficiency, vertex efficiency and phase space needed

- Typically first measurements at "new" collision energy
 - need dedicated run with minimal pile-up
 - very beneficial for detector understanding
Analysis procedure | Selection

- Event selection
 - MBTS trigger selection
 - $\mu < 0.01$ to suppress pile-up track counting
 - require reconstructed vertex with minimum 2 tracks (veto event with additional vertex with > 4 tracks)
 - require a minimum number of selected tracks (n_{sel})

- Track selection
 - $|d_0^{\text{PV}}| < 1.5$ mm \ $|z_0^{\text{PV}} \sin(\theta)| < 1.5$ mm
 - fit χ^2 probability > 0.01 for $p_T > 10$ GeV
 - innermost pixel hit if module active/crossed, minimum 1 hit in the pixel detector
 - minimum 2/4/6 hits in the strip detector for $p_T > 0.1/0.2/0.3$ GeV

MBTS = Minimum Bias Trigger Scintillators
(2.08 < |eta| < 3.75)
32 scintillation counters
Analysis procedure | Correction

- Event weights

\[\omega_{ev}(n_{\text{BS}}^\text{sel}) = \frac{1}{\epsilon_{\text{trig}}(n_{\text{BS}}^\text{sel})} \cdot \frac{1}{\epsilon_{\text{vtx}}(n_{\text{BS}}^\text{sel}, x)} \cdot \omega_{\text{zvrtx}} \]

- Track weights

\[\omega_{trk}(p_T, \eta) = \frac{1}{\epsilon_{\text{trk}}(p_T, \eta)} \cdot (1 - f_{\text{nonp}}(p_T, \eta) - f_{\text{SB}}(p_T, \eta) - f_{\text{okr}}(p_T, \eta)) \]

1. Track reconstruction efficiency
2. Non-primary fraction
3. Strange baryon fraction
4. Out of phase space

(resolution effects)
Event weights

trigger efficiency
- measured from data using a random space point trigger
- parameterised as $n_{\text{sel}}^{\text{BS}}$
 analysis track selection w/o PV (uses beam spot instead)

vertex reconstruction efficiency
- probability to find a vertex on a triggered event
 measured from data
- parameterised as $n_{\text{sel}}^{\text{BS}}$
 $n_{\text{sel}}^{\text{BS}} \geq 2$ for $p_T > 0.1$ GeV analysis
 $n_{\text{sel}}^{\text{BS}} \geq 1$ for $p_T > 0.5$ GeV analysis
Track weights

track reconstruction efficiency

- estimated from MC simulation, binned in τ_a and p_T
- relies on correct modelling of the tracker material
- dominant systematic uncertainty for these analyses
- assumes material modelling of the inner tracker to 5% accuracy
- supported by many studies of the tracker material budget
 hadron interaction rates (vertexing)
 photon conversion
 track length requirements
- in general excellent modelling of the data by full simulation
Track weights

Track reconstruction efficiency

- estimated from MC simulation, binned in η and p_T
 relies on correct modelling of the tracker material
- dominant systematic uncertainty for these analyses
 assumes material modelling of the inner tracker to 5% accuracy
- supported by many studies of the tracker material budget
 hadron interaction rates (vertexing)
 photon conversion
 track length requirements
- in general excellent modelling of the data by full simulation

JINST 7 (2012) P01013
Track weights

non-primary fraction

- for analysis no distinction between fakes and secondaries done
- estimated via a template fit to the impact parameter distribution

 done w.r.t beam line to avoid event biases

strange baryon fraction

- updated stable particle definitions: $\tau > 300$ ps
- includes many strange baryons
 very low tracking efficiency,
 strongly varies with transverse momentum
- generators predict very different fractions
- removed for 8/13 TeV from fiducial definition
 decreases generator dependency, EPOS LHC
 extrapolation for comparison with older analyses

![Graph showing the number of tracks vs. d_0^{BL} [mm] for different particle types: Primaries, Electrons, Non-electrons, and Fakes.](image)

![Graph showing the generated fraction of strange baryons vs. p_T [GeV] for different particle types: PYTHIA 8 A2, PYTHIA 8 Monash, EPOS LHC.](image)
Charged particle multiplicities | Result History

- Fairly good shape modelling by most generators
 - measurements are continuously used for tuning
 - EPOS (LHC tune) very good modelling at 8 TeV
Charged particle multiplicities | Results 8 TeV

- 8 TeV analysis extended to high multiplicity phase-spaces
 - event selections with $n_{\text{ch}} = 1, 6, 20, 50$
 - most generators have seen limited tuning in this corner
 - deviations from data start getting bigger
Charged particle multiplicities | Results 13 TeV

- 13 TeV result gives a new tuning point with large lever arm
 - high precision measurements for two phase space definitions
 - good description of data through EPOS for event quantities
Set of ATLAS measurements (0.9/7/13 TeV) used for PYTHIA tuning

- new ATLAS Pythia tune A3 starting from Monash tune, using NNPDF 2.3LO PDF

<table>
<thead>
<tr>
<th>\sqrt{s} [TeV]</th>
<th>used measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>charged particle distribution</td>
</tr>
<tr>
<td>7</td>
<td>charged particle distribution, transverse energy flow, fiducial inelastic cross-section, rapidity gap analysis</td>
</tr>
<tr>
<td>13</td>
<td>charged particle distribution, fiducial inelastic cross-section</td>
</tr>
</tbody>
</table>

- better description at 7/8/13 TeV but worse at lower s
without strange baryon removal

<table>
<thead>
<tr>
<th>\sqrt{s} [TeV]</th>
<th>$dN_{ch}/d\eta$</th>
<th>$\eta=0$</th>
<th>\pm stat</th>
<th>\pm sys</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1.343*</td>
<td>0.004</td>
<td>0.027</td>
<td></td>
<td>NJP 13 (2011) 053033</td>
</tr>
<tr>
<td>2.36</td>
<td>1.74*</td>
<td>0.019</td>
<td>0.058</td>
<td></td>
<td>Eur. Phys. J. C (2016) 76:403</td>
</tr>
<tr>
<td>7</td>
<td>2.43*</td>
<td>0.001</td>
<td>0.050</td>
<td></td>
<td>PLB (2016), Vol. 758, pp. 67-88</td>
</tr>
<tr>
<td>8</td>
<td>2.477</td>
<td>0.001</td>
<td>0.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2.874</td>
<td>0.001</td>
<td>0.033</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$p_T > 0.5$ GeV, $n_{ch} \geq 1$

$p_T > 0.1$ GeV, $n_{ch} \geq 2$

Charged particle multiplicities

| Result Summary |
Underlying event analyses

- Charged particle measurement* accompanying hard scatter
 - partons not included in hard scatter (beam remnants)
 - additional scatters in same p-p collision (multi parton interactions, MPI)
 - contributions from initial (ISR) and final (FSR) gluon radiation

- phase space definition for the underlying event

<table>
<thead>
<tr>
<th>Observable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle d^2 N_{\text{ch}} / d\eta d\phi \rangle$</td>
<td>Number of tracks per unit $\eta-\phi$</td>
</tr>
<tr>
<td>$\langle d^2 \sum p_T / d\eta d\phi \rangle$</td>
<td>Scalar sum of track p_T per unit $\eta-\phi$</td>
</tr>
</tbody>
</table>

*very similar/identical experimental technique and systematics as slides 3-8
Underlying event | Results

- Leading track analysis
 - analysis separated into 3 regions
 - requirement on $p_T > 1 \text{ GeV}$

- Good modelling by Pythia 8 tunes
 - shapes generally well modelled
Conclusion

‣ ATLAS has a full set of minimum bias and underlying event analyses
 - covering different centre of mass energies and phase space definitions

‣ Recent 8 TeV and 13 TeV improved sys. uncertainties significantly
 - mainly due to better understanding of the tracker material
 description after IBL insertion can still improve w.r.t. Run-1 description
 helps many other precision measurements
 - better understanding of strange baryon handling

‣ Rich dataset for generator tuning available
 - data only corrected for detector effects, no model corrections/extrapolations
 - data available as HepData

‣ Underlying event results of similar quality and importance
 - give confidence in current UE simulation
Track reconstruction performance

- Track reconstruction performance evaluation is essential
 - excellent modelling of track parameters and properties by simulation puts confidence in estimating key parameters from simulation
 - result of years of detailed detector modelling in the full simulation
Systematic uncertainties

- **13 TeV low pt**

| Distribution | $\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d|\eta|}$ | $\frac{1}{N_{ev}} \cdot \frac{1}{2\pi p_T} \cdot \frac{d^2N_{ch}}{d\eta dp_T}$ | $\frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dn_{ch}}$ | $\langle p_T \rangle$ vs. n_{ch} |
|-----------------------|--|---|---|-----------------------------------|
| **Range** | 0–2.5 | 0.1–50 GeV | 2–250 | 0–160 GeV |
| Track reconstruction | 1%–7% | 1%–6% | 0%–38% | 0%–0.7% |
| Track background | 0.5% | 0.5%–1% | 0%–7% | 0%–0.1% |
| p_T spectrum | – | – | 0%–3% | 0%–+0.3% |
| Non-closure | 0.4%–1% | 1%–3% | 0%–4% | 0.5%–2% |