Searches for CPV in D^0 decays at LHCb

Shanzhen Chen1, on behalf of the LHCb collaboration

1The University of Manchester

CHARM 2016
Bologna, Italy
7 September 2016
Outline

• Physics motivations
• Time-integrated CPV in two body decays
 • A_{CP} in $D^0 \rightarrow K^+K^-$ \textcolor{red}{New for ICHEP}
• Time-integrated CPV in multi-body decays
 • $D^0 \rightarrow \pi^+\pi^+\pi^-\pi^-$ \textcolor{red}{New for CHARM}
• Summary & conclusions
Physics motivations

- CP violation found in kaon and B sectors, **not in charm**
- Charm hadron is the **only up-type sector** that could search for CP violation
- CP violation in charm
 - Expected to be $\sim 10^{-3}$ by Standard Model
 - Interfering tree and penguin amplitudes
 - **New physics contributions may enhance CPV up to $\sim 10^{-2}$** *
- There are two ways to CP violation
 - In decay amplitude (time-integrated) ← this talk
 - In mixing or interference (time-dependent) ← see S. Reichert and P. Marino’s talks

D^0 tagging

- To get the initial flavour of D^0, two techniques are used:
 - $D^{*+} \rightarrow D^0 \pi^+$, pion tagged
 - $B^- \rightarrow D^0 \mu^- X$, muon tagged
Measurement of CP asymmetry in $D^0 \rightarrow K^- K^+$ decays

LHCb-PAPER-2016-035 (in preparation)
\[A_{CP}(D^0 \rightarrow K^-K^+) \] Method

- Define \[A_{raw}(D^0 \rightarrow f) = \frac{N(D^0 \rightarrow f) - N(\bar{D}^0 \rightarrow \bar{f})}{N(D^0 \rightarrow f) + N(\bar{D}^0 \rightarrow \bar{f})} \]

- Measure \[A_{CP}(D^0 \rightarrow K^-K^+) \], using pion tagged \(D^{*+} \rightarrow D^0 \pi_s^+ \)

\[A_{CP}(D^0 \rightarrow K^-K^+) = A_{raw}(D^0 \rightarrow K^-K^+) - A_{prod}(D^{*+}) - A_{det}(\pi_s^+) \]

- Eliminate detection / production asymmetries using control channels

- \(K^0 \) asymmetry determined using known material interaction asymmetry
Signal, control samples and results

Samples are weighted to cancel production and detection asymmetries

Extract yields with binned maximum likelihood fit to δm in D^0 mass region for D^* modes, or $m(D^*)$

Result:

$$A_{CP}^{\pi-tag}(K^-K^+) = [0.14 \pm 0.15(stat) \pm 0.10(syst)]\%$$
Combination with previous results

\[A_{CP}^{\pi-\text{tag}}(K^-K^+) = [0.14 \pm 0.15(\text{stat}) \pm 0.10(\text{syst})] \%
\]

Combined with pion tagged \(\Delta A_{CP} \) measurement [PRL 116.191601]

\[\Delta A_{CP} = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \]
\[A_{CP}^{\pi-\text{tag}}(\pi^-\pi^+) = [0.24 \pm 0.15(\text{stat}) \pm 0.11(\text{syst})] \%
\]

Combined with muon tagged measurement [JHEP (2014) 2014: 41]

\[A_{CP}^{\text{comb}}(K^-K^+) = [0.04 \pm 0.12(\text{stat}) \pm 0.10(\text{syst})] \%
\]
\[A_{CP}^{\text{comb}}(\pi^-\pi^+) = [0.07 \pm 0.14(\text{stat}) \pm 0.11(\text{syst})] \%
\]

Results consistent with no CPV

See E.Gersabeck’s poster!
Search for \(CP \) asymmetry in \(D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^- \) decays

LHCb-PAPER-2016-044 (in preparation)
CPV in $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- Multi-body decays
 - Rich resonant structures in decay phase space
 - Variation of strong phase difference among the Dalitz plot may enhance local CPV sensitivity
- Four-body decays CPV
 - Standard P-parity-even observables compare $D^0 - \bar{D}^0$
 - Novel P-parity–odd observables
- Analysis method: energy test
 - Model-independent, unbinned method to search for local CPV in the decay phase space
Signal sample

- Pion tagged D^0 decays
 - $D^{*+} \rightarrow D^0 \pi_s^+$
- ~1M signal candidates
- Purity ~96%
- Use all LHCb Run 1 sample
 - 2011+2012

- Previous LHCb $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ analysis using 2011 data, with binned approach, and P-even observables [PLB726 (2013) 623]
Energy test

- Compare two distributions statistically
- Idea comes from the calculation of electric potential energy

$+q$ and $-q$ equally distributed, electric potential energy $= 0$
Energy test

• Compare two distributions statistically
• Idea comes from the calculation of electric potential energy

$+q$ and $-q$ equally distributed, electric potential energy $= 0$

$+q$ and $-q$ distributions different, electric potential energy > 0
Energy test

System → phase space
+q /−q → opposite flavoured decays

\[\psi(d_{ij}) = e^{-d_{ij}/2\delta^2} : \text{interaction potential} \]

\(n, \bar{n} : \text{number of } D^0, \bar{D}^0 \text{ candidates} \)

\(d_{ij} : \text{distance in phase space} \)

Test statistic: \(T = \frac{1}{n(n-1)} \sum_{i,j>i}^n \psi(d_{ij}) + \frac{1}{n(n-1)} \sum_{i,j>i}^\bar{n} \psi(d_{ij}) - \frac{1}{nn} \sum_{i,j}^{n,\bar{n}} \psi(d_{ij}) \)
Energy test

- Compare T-value from tested sample (T_0) with T-values from no-CPV samples
- No-CPV sample from permutation of data: randomly assign flavour tags
- p-value: fraction of permutation T-values above T_0

Large p-value, no-CPV
Energy test

- Compare T-value from tested sample (T_0) with T-values from no-CPV samples
- No-CPV sample from permutation of data: randomly assign flavour tags
- p-value: fraction of permutation T-values above T_0

Small p-value, evidence of CPV!
Energy test

• First application in LHCb $D^0 \rightarrow \pi^- \pi^+ \pi^0$ analysis

 PLB740 (2015) 158-167

• This time, extend method to four body decays
New P-odd observables

- Standard test compare $D^0 - \bar{D}^0$, sensitive to only P-parity-even
- In decays to four or more pseudo-scalars, there is the possibility of using P-parity-odd observables for CP violation searches
- Four-body-decay kinematics cannot be described unambiguously using only invariant-mass-squared variables, as these are all parity even
- In $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ decay, there is P-odd amplitude
- Introduce triple product C_T as parity sensitive variable

$$C_T = \vec{p}(\pi_3) \cdot \left[\vec{p}(\pi_1) \times \vec{p}(\pi_2) \right]$$

$$CP(C_T) = -C(C_T) = -\bar{C}_T$$
New P-odd observables

- The total sample could be divided into four sub-samples according to the particle/antiparticle flavour and the triple product sign:

- Asymmetries may be measured in the C_T regions using the number of events populating the four samples

$$A_{CP}(C_T > 0) = \frac{N(I) - N(III)}{N(I) + N(III)}, \quad A_{CP}(C_T < 0) = \frac{N(II) - N(IV)}{N(II) + N(IV)}$$
New P-odd observables

- CP asymmetries can be extracted from these samples that are P-even or P-odd simply by adding or subtracting the asymmetries measured in C_T regions:

\[A_{CP}^{P-even} = \frac{A_{CP}(C_T > 0) + A_{CP}(C_T < 0)}{2}, \quad A_{CP}^{P-odd} = \frac{A_{CP}(C_T > 0) - A_{CP}(C_T < 0)}{2} \]

- P-even : I+II vs. III+IV
 - Integral over C_T, not sensitive to P-odd amplitude

- P-odd : I+IV vs. II+III
 - Mix of flavours, P-even contribution cancels out
Sensitivity tests with Monte Carlo

- Performed for both P-even and P-odd tests
- Insert CP violation to simulated samples*, apply energy test, determine the sensitivity
- Visualise significance of asymmetries by assigning per-event T-values
- Highlight those $>1,2,3\sigma$ positive in red, negative in blue

<table>
<thead>
<tr>
<th>$R(\Delta A, \Delta \phi)$</th>
<th>p-value (fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_1 \rightarrow \rho^0\pi$ (S) (5%, 0°)</td>
<td>$2.6^{+3.4}_{-1.7} \times 10^{-4}$</td>
</tr>
<tr>
<td>$a_1 \rightarrow \rho^0\pi$ (S) (0%, 3°)</td>
<td>$1.2^{+3.6}_{-1.2} \times 10^{-6}$</td>
</tr>
<tr>
<td>$\rho^0\rho^0$ (D) (5%, 0°)</td>
<td>$3.8^{+2.9}_{-1.9} \times 10^{-3}$</td>
</tr>
<tr>
<td>$\rho^0\rho^0$ (D) (0%, 4°)</td>
<td>$9.6^{+2.4}_{-7.2} \times 10^{-6}$</td>
</tr>
<tr>
<td>$\rho^0\rho^0$ (P) (4%, 0°)</td>
<td>$3.0^{+1.2}_{-0.9} \times 10^{-3}$</td>
</tr>
<tr>
<td>$\rho^0\rho^0$ (P) (0%, 3°)</td>
<td>$9.8^{+4.4}_{-3.8} \times 10^{-4}$</td>
</tr>
</tbody>
</table>

Example: $3°$ phase difference in $D^0 \rightarrow a_1(1260)^+\pi$ Amplitude

(P-even test)

*Prelim. amplitude model from CLEO-c measurement, see P. D’Argent’s talk
Detection / tracking / production asymmetries

- Cancellations occur due to method
- Verified with a control sample of Cabibbo-favoured $D^0 \rightarrow K^{-}\pi^+\pi^+\pi^-$ decays
 - Split into ten sub-samples equal in size to signal mode
 - Sensitive with neither P-even nor P-odd tests
- p-value distributions for reference sample

![Graphs showing p-value distributions for LHCb preliminary P-even and P-odd tests.](image)
Results (Preliminary)

$LHCb$ preliminary

P-even
p-value: $(4.3\pm0.6)\%$
2.0σ

P-odd
p-value: $(0.6\pm0.2)\%$
2.8σ

P-odd test only marginally consistent with no-CPV hypothesis
Conclusions

- The LHCb has performed very well in Run 1 (2011+2012, 3/fb)
- LHCb makes many interesting charm measurements, today:
 - Measurement of \(CP \) asymmetry in \(D^0 \rightarrow K^-K^+ \) decays
 - LHCb-PAPER-2016-035 (in preparation)
 - \(A_{\text{CP}}^{\pi^{-}\text{tag}}(K^-K^+) = [0.14 \pm 0.15(\text{stat}) \pm 0.10(\text{syst})]\% \)
 - Search for \(CP \) asymmetry in \(D^0 \rightarrow \pi^+\pi^-\pi^+\pi^- \) decays
 - LHCb-PAPER-2016-044 (in preparation)
 - \(\rho \)-value=2.0\(\sigma \) for \(P \)-even test, \(\rho \)-value=2.8\(\sigma \) for \(P \)-odd test
 - \(P \)-odd test only marginally consistent with no \(CPV \)
 - Will repeat analysis with Run 2 data

Future:

- LHC is running very efficiently
- Data are being recorded (Run 2): 2015-18 > 8/fb at \(\sqrt{s}=13 \) TeV
- Many new and updated results will come soon!
Backup
List of LHCb D^0 direct CPV paper

- Measurement of the difference of time-integrated CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays
 Phys. Rev. Lett. 116 (2016) 191601
- Measurement of the time-integrated CP asymmetry in $D^0 \to K_S^0K_S^0$ decays
 JHEP 10 (2015) 055
- Search for CP violation in $D^0 \to \pi^-\pi^+\pi^0$ decays with the energy test
- Search for CP violation using T-odd correlations in $D^0 \to K^+K^-\pi^+\pi^-$ decays
 JHEP 10 (2014) 005
- Measurement of CP asymmetry in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays
 JHEP 07 (2014) 041
- Model-independent search for CP violation in $D^0 \to K^-K^+\pi^-\pi^+$ and $D^0 \to \pi^-\pi^+\pi^+\pi^-$ decays
- Search for direct CP violation in $D^0 \to h^-h^+$ modes using semileptonic B decays
 Phys. Lett. B723 (2013) 33
- Evidence for CP violation in time-integrated $D^0 \to h^-h^+$ decay rates
Phase space for 4π energy test

- Four-body decays have 5 degrees of freedom
- 6 two-body invariant masses, 4 of them are physically meaningful
- 4 three-body invariant masses

- Fix the charge order of the four pions: $1234=+---$
- $m^2(\pi^+\pi^-)$: s_{12} s_{14} s_{23} s_{34} are all possible combinations
- $m^2(\pi^+\pi^-\pi^+)$: s_{123} s_{134}
- $m^2(\pi^+\pi^-\pi^-)$: s_{124} s_{234}
- Find the largest $m^2(\pi^+\pi^-)$, and let it be s_{34}, the order is fully determined
- The dominating resonances are not with very high mass, so reject highest two-body mass combinations s_{34} and three-body combinations including it: s_{134}, s_{234}
- 5 coordinates left: s_{12} s_{14} s_{23} s_{123} s_{124}
P-odd MC vs data

P-odd

Monte Carlo

\[p\text{-value: 9.8X10^{-4}} \]

\[P\text{-odd data} \]

\[p\text{-value: (0.6\pm0.2)\% 2.8\sigma} \]
Reference sample p-value ranges

P-even: from 3% to 87%
P-odd: from 8% to 74%
Results with other metric parameters

\[\psi(d_{ij}) = e^{-d_{ij}/2\delta^2} \]

- Metric parameter \(\delta \) affects the interaction range in phase space, plays the role of bin size in binned approaches.
- Default \(\delta \) was chosen to be the 0.5 GeV\(^2/c^4\) before unblinding of data. This is the value that gives best sensitivity in most of the simulated CPV scenarios.

- Results with other \(\delta \)'s:
 - \(\delta = 0.3 \), \(P \)-even \(p \)-value = (1.1 \(\pm \) 0.4)\%
 - \(\delta = 0.3 \), \(P \)-odd \(p \)-value = (0.4 \(\pm \) 0.2)\%
 - \(\delta = 0.7 \), \(P \)-even \(p \)-value = (15.8 \(\pm \) 1.9)\%
 - \(\delta = 0.7 \), \(P \)-odd \(p \)-value = (0.8 \(\pm \) 0.5)\%