Measurement of the suppression and v_2 of heavy flavor muons in lead-lead collisions with the ATLAS detector

Qipeng Hu (胡启鹏)

University of Science and Technology of China

on Behalf of the ATLAS Collaboration

24 Sept. 2016
Motivation

- \(c(m \sim 1.3 \text{ GeV}) \) and \(b(m \sim 4.7 \text{ GeV}) \). Unique probe to study QGP. Mass not affected by interaction with QCD medium.

- Produced at early stage and can be used to probe QGP medium properties and evolution.

- Suppression and elliptic flow of heavy flavor leptons, originating from semileptonic decays of \(D \) and \(B \) mesons, observed at RHIC energy.
ATLAS detector

Inner Detector (ID) $|\eta| < 2.5$
Calorimeter (CALO) $|\eta| < 4.9$
Muon Spectrometer (MS) $|\eta| < 2.7$

Forward Calorimeter (FCal) $3.1 < |\eta| < 4.9$

Event characteristics (centrality, event plane)
Muon detecting

$$\eta = 1.05$$

Barrel $$|\eta| < 1.05$$
End-cap $$1.05 < |\eta| < 2.4$$

High quality muons leave tracks in ID and MS, and lose energy in the Calorimeter.
Heavy flavor muon extraction

Momentum imbalance:

\[
\frac{\Delta p}{p_{\text{ID}}} = \frac{p_{\text{ID}} - (p_{\text{MS}} + \Delta p_{\text{calo}})}{p_{\text{ID}}}
\]

- Heavy flavor (HF) muons have quite different momentum imbalance distribution from the decay-in-flight
- Sufficient discrimination variable but sensitive to momentum resolution
- Very similar for pp and Pb+Pb, no centrality dependence
Signal extraction in data

- Templates are builded in simulation. Fits performed to extract heavy flavor muon fraction
- Good agreements between data and templates
Other background contamination

- Inclusive single muon p_T spectrum after subtracting decay-in-flight using 2010 pp data at 7 TeV
- For $p_T < 14$ GeV, other sources of background are negligible
- HF muon fiducial volume:

 $4 < p_T < 14$ GeV

 $|\eta| < 1.0$

Best momentum resolution

Signal purity ~100%

Small systematic uncertainty
HF muon production

- HF muon differential fiducial cross section in pp:
 \[
 \frac{d^2\sigma_{HF\mu}}{dp_Td\eta} = \frac{1}{\mathcal{L}} \frac{\Delta N_{\mu f_{sig}}}{\Delta p_T \Delta \eta} \cdot \frac{1}{\varepsilon_{trig}\varepsilon_{reco}}
 \]

- HF muon differential fiducial per-event yields in Pb+Pb:
 \[
 \left. \frac{1}{N_{evt}} \frac{d^2N_{HF\mu}}{dp_Td\eta} \right|_{cent} = \frac{1}{N_{evt}^{\text{cent}}} \frac{\Delta N_{\mu f_{sig}}^{\text{cent}}}{\Delta p_T \Delta \eta} \cdot \frac{1}{\varepsilon_{trig}\varepsilon_{reco}}
 \]

Corrected for muon trigger and reconstruction efficiency per muon
Nuclear modification factor

\[R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{(1/N_{evt})d^2N/(dp_Td\eta)}{d^2\sigma^{pp}/(dp_Td\eta)} \]

- HF muon \(R_{AA} \) measured in 5 centrality slices covers 0-60%
- Significant suppression (0.4) in most central
- Strong centrality dependence. No strong dependence on \(p_T \)
Mid-rapidity vs. forward

- Good agreement between ATLAS and ALICE
- No obvious rapidity dependence
HF muon vs. D meson

- Very different behavior compared to the D^0 or inclusive hadron
- Significantly smaller suppression for inclusive HF muons
- Strong momentum dependence for hadrons and D^0
HF muon vs. B meson

- **Different energy and different centrality**
- **Similar behavior within uncertainties**

![Graphs showing comparison between ATLAS HF muon and CMS B+ meson data](image)

ATLAS HF muon

CMS B+ meson

CMS-HIN-16-011

ATLAS Preliminary

CMS Preliminary

<table>
<thead>
<tr>
<th>Centrality</th>
<th>ATLAS 2011 Pb+Pb L_int = 0.14 nb^{-1}</th>
<th>CMS 2013 pp L_int = 4.0 pb^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td>R_{AA} = 0.14 ± 0.02</td>
<td>R_{AA} = 0.14 ± 0.02</td>
</tr>
<tr>
<td>20-30%</td>
<td>R_{AA} = 0.14 ± 0.02</td>
<td>R_{AA} = 0.14 ± 0.02</td>
</tr>
<tr>
<td>40-60%</td>
<td>R_{AA} = 0.14 ± 0.02</td>
<td>R_{AA} = 0.14 ± 0.02</td>
</tr>
</tbody>
</table>

*CMS | B^+ | | y < 2.4 | M. Djordjevic et al. | M. He et al. | CUJET3.0 0-20% |
Centralities (averaged over measured ranges) are similar

- Weak (or none) p_T dependence in both measurements

ATLAS Preliminary

$\sqrt{s_{NN}} = 2.76$ TeV

ATLAS HF muon

CMS b-jet

PRL 113(2014)132301
Elliptic flow of HF muons

- Event plane method is used to extract HF muon elliptic flow
- Reaction plane angle Ψ_2 is determined based on FCal energy deposition
- Decay-in-flight subtracted
- EP resolution correction applied

$$\frac{dN}{d\phi} = N_0 \left[1 + 2v_2^{\text{obs}} \cos(2(\phi - \Psi_2)) \right]$$

$$v_2 = \frac{v_2^{\text{obs}}}{\text{Res}\{2\Psi_2\}}$$
Significant v_2 (~8%) at lower p_T. Still significant up to $p_T \sim 10$ GeV

Good agreement between ATLAS and ALICE
HF muon flow vs. D^0 flow

- Similar decrease trend for $p_T > 4$ GeV
- v_2 (HF muon) < v_2 (D^0)
Summary

- HF muons found to be suppressed in Pb+Pb collisions with a strong centrality dependence
- HF muon R_{AA} similar with b-jet, but different from D^0 and charge hadron
- Significant non-zero v_2 of HF muons up to 10 GeV. Good agreement between ATLAS and ALICE.
- v_2 (HF muon) < v_2 (D^0)

Thanks!
HF muon extraction for 2010 data

\[\frac{\Delta p}{p_{ID}} = \frac{p_{ID} - (p_{MS} + \Delta p_{\text{calo}})}{p_{ID}} \]

momentum imbalance

scattering angle significance

decay-in-flight would cause large deflection, useful for very low \(p_T \) (\(\lesssim 4 \) GeV)

\[C = \left| \frac{\Delta p_{\text{loss}}}{p_{ID}} \right| + 0.07 \cdot S \]

Composite

\(L \cdot dt = 7 \text{ub}^{-1} \)

ATLAS PRELIMINARY
Signal fraction and spectra

\begin{itemize}
\item \textbf{ATLAS Preliminary}
\item \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \)
\item 2011 Pb+Pb \(L_{\text{int}} = 0.14 \text{ nb}^{-1} \)
\item \(|\eta| < 1\)
\end{itemize}

\begin{itemize}
\item \(\sqrt{s} = 2.76 \text{ TeV} \)
\item 2013 pp \(L_{\text{int}} = 4.0 \text{ pb}^{-1} \)
\item \(|\eta| < 1\)
\end{itemize}

2010 Data

2011 Data
HF fraction and spectra in 2010 data

\[\frac{1}{N_{\text{evt}}} \frac{d^2N}{dp_T d\eta} \]

\(\int L \, dt = 7 \, \mu b^{-1} \)

\(\sqrt{s_{NN}} = 2.76 \, \text{TeV} \)

\(|\eta| < 1.05 \)
Mass ordering of R_{AA}

$m_b \sim 5 \text{ GeV}$

$m_c \sim 1.5 \text{ GeV}$

Bugatti, Gyulassy 2011
Event plane determination

- Reaction plane (Ψ_{RP}) is approximated by event plane ($\Psi_{n \, EP}$) measured in FCal:

$$\Psi_{n \, EP} = \frac{1}{n} \tan^{-1} \left(\frac{\sum_i E_{T,i}^{tower} w_i \sin(n\phi_i)}{\sum_i E_{T,i}^{tower} w_i \cos(n\phi_i)} \right)$$

- The event plane resolution correction factor R is obtained using two-sub event and various tree-subevent method
- Significant resolution for harmonics $n=2$–6
- Resolution corrected harmonics:

$$\nu_n = \langle \cos(n(\Phi - \Psi_n)) \rangle / R$$